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Abstract 
 
Verification efficiency is the latest topic being discussed 
among engineers and EDA vendors. In order to work 
smarter, engineers can make improvements to the overall 
verification process, by automating best practices rather 
than focusing on incremental speed improvements in 
individual point tools.  
This article describes how engineers doing ARM SoC 
verification can be more efficient through automated 
process solutions based on a single, reconfigurable 
verification system, applications, and a unified system 
verification methodology to allow engineers to execute 
hardware and software tests with a flexible mix of 
performance and debugging. 
 
 
The State of Verification 
 
Verification efficiency is the latest topic being discussed 
among engineers and EDA vendors. Engineers are 
wondering how to leverage all of the point tools that have 
been developed to solve specific issues to create a single, 
cohesive system verification methodology for hardware 
and software verification. 
 
In order to work smarter, engineers can make 
improvements to the overall verification process, by 
automating best practices rather than focusing on 
incremental speed improvements in individual point 
tools. In addition, engineers can improve in one of the 
three areas that take up their time during the verification 
process: 
 
Verification environment creation is the time spent to 
construct the environment, including testbenches, 
testcases, models, etc. This process is mostly manual with 
some automation in the area of testbench generation. 
 
Execution is the time spent to run the test scenarios. 
Increasing raw performance is the primary way to run the 
test scenarios in a shorter period of time. 
 
Interpreting results and debugging is the time spent to 
decide if test scenarios are working and how to find and 
fix problems for scenarios that are not working. This is 
also a mostly manual process with some automation in 
the area of functional coverage. 
 

This article describes how engineers doing ARM SoC 
verification can be more efficient through automated 
process solutions based on a single, reconfigurable 
verification system, applications, and a unified system 
verification methodology to allow engineers to execute 
hardware and software tests with a flexible mix of 
performance and debugging.  
 
 
The Three Components of HW/SW Co-Verification 
 
A Verification Process Automation (VPA) solution for 
SoC verification integrates pre-proven best practices, 
automation and analyses to simplify verification. VPA 
spans all stages of the SoC verification process, from the 
block/unit level, to the chip/system level and to the 
project level. Specifically for HW/SW co-verification, a 
unified system verification methodology (SVM) must 
provide not only best-in-class point tools in each area, but 
also complete interoperability between them. Three 
components of HW/SW co-verification are: 
 
1. Verification platform 

2. Hardware verification tools and techniques 

3. Embedded system software testing and debugging 
tools and techniques 

 

Verification Platform 
The verification platform is the method used to execute a 
description of the hardware design. It has other common 
names, such as execution engine or virtual prototype. The 
hardware design process consists of describing the 
hardware using one of the two common hardware 
description languages, Verilog or VHDL, or a high-level 
modeling language, such as SystemC. This HDL 
representation of the hardware design can be executed 
using any number of platforms or execution engines. 
 
Four distinct methods used for the execution of the 
hardware design that have been identified and are 
commonly used in SoC design: 
 
• Logic Simulation 

• Simulation Acceleration 

• In-Circuit Emulation 



• Hardware Prototyping 

Each hardware execution method has specific debugging 
techniques associated with it − each with its own set of 
benefits and limitations. The methods range from the 
slowest execution method, with the most debugging, to 
the fastest, with less debugging. 
 
Throughout this paper, the following definitions are used: 
 
Software Simulation refers to an event-based logic 
simulator that operates by propagating input changes 
through a design until a steady state condition is reached. 
Software simulators run on workstations and use Verilog 
or VHDL as a simulation language to describe the design 
and the testbench. Some portions of the hardware may be 
more abstractly modeled using a high-level language, 
such as SystemC. 
 
Simulation Acceleration refers to the process of 
mapping the synthesizable portion of the design into a 
hardware platform specifically designed to increase 
performance by evaluating the HDL constructs in 
parallel. The remaining portions of the simulation are not 
mapped into hardware, but run in a software simulator. 
The software simulator works in conjunction with the 
hardware platform to exchange simulation data. 
Removing most of the simulation events from the 
software simulator and evaluating them in parallel using 
dedicated hardware increases performance.  
 
Emulation refers to the process of mapping an entire 
design into a hardware platform that performs parallel 
processing to increase performance. There is no constant 
connection to the workstation during execution, and the 
hardware platform receives no input from the 
workstation. By eliminating the connection to the 
workstation, the hardware platform now runs at its full 
speed and does not need to wait for any communication. 
 
In-Circuit refers to the use of external hardware coupled 
to a hardware platform for the purpose of providing a 
more realistic environment for the design being 
simulated. This hardware commonly takes the form of 
circuit boards, sometimes called target boards or a 
target system, and test equipment cabled into the 
hardware platform. Emulation without the use of any 
target system is defined as targetless emulation. 
 
Hardware Prototype refers to the construction of 
custom hardware or the use of reusable hardware 
(breadboard) to construct a hardware representation of 
the system. A prototype is a representation of the final 
system that can be constructed faster and is available 
sooner than the actual product. This is achieved by 
making tradeoffs in product requirements, such as 

performance and packaging. A common path to a 
prototype is to save time by substituting programmable 
logic for ASICs. 
 
Hardware Verification 
Hardware verification describes the tools and techniques 
used to decide if a hardware design is operating correctly. 
An entire industry has emerged to provide products that 
augment the verification platform to help engineers 
develop test scenarios and interpret the results. Special 
verification languages have been designed to improve 
efficiency and verification quality. Other commonly used 
tools are code coverage, lint tools, and debugging tools to 
visualize results.  
 
To rapidly compose the system verification environment, 
a successful methodology enables reuse of the 
components.  In addition, a successful methodology 
supports a variety of software connection techniques and 
switching between them as well as the ability to apply it 
to front-end transaction-level analysis and post-silicon 
validation. 
 
Embedded System Software  
The final test for the hardware design is to correctly run 
the embedded system software. Even if the hardware can 
successfully run all of the embedded software, there is no 
guarantee it is bug free, but it does indicate a fairly 
healthy design. HW/SW co-verification is the best way to 
operate more efficiently by making sure all of the 
software works with the hardware before the hardware 
design is fabricated. Co-verification provides two 
primary benefits: 
 
1. Software engineers have much earlier access to the 

hardware design. This allows software designers to 
develop code and test it concurrently with hardware 
design and verification. Performing these activities in 
parallel shortens the project schedule, compared with 
the serial method of waiting for the prototype to 
begin software testing.  Moreover, the early 
involvement of the software team results in a much 
better understanding of the underlying hardware 
operation.  

2. Co-verification provides additional stimulus for the 
hardware design. In fact, it can provide the true 
stimulus that will occur in the embedded system. 
This improves hardware verification when compared 
to using a contrived testbench that may or may not 
represent real system conditions.  

By performing HW/SW co-verification, a wide range of 
problems can be found and fixed prior to silicon, such as 
register map discrepancies, problems in the boot code, 
errors in DMA controller programming, RTOS boot and 
configuration errors, bus pipelining problems, and cache 



coherency mishaps. Some of the errors will be software 
problems and some hardware-related. Addressing these 
issues must be done using a logical and well-conceived 
co-verification strategy.  

 

 
Co-verification requires that accurate microprocessor 
models and software debugging tools be available to 
software engineers as early as possible.  It also requires 
that the verification platform provide the best mix of 
performance and debugging for software engineers to 
work effectively with hardware engineers. The system 
verification methodology supports the easy transition to 
co-verification and between the various hardware 
modeling techniques, and adapts to the growing scope of 
system verification, including application software. 

Figure 1 
 
 
Different Perspectives of Software and Hardware 
Engineers 

  
Five distinct types of embedded system software have 
been identified; the software content (that is, lines of 
code) increases with each successive step: 

Before discussing the specifics of methodology and tools, 
it is important to recall that software engineers view the 
world very differently from hardware engineers. Here is a 
brief review of the different perspectives of software and 
hardware engineers. 

 
• System initialization software and hardware 

abstraction layer (HAL)  
Software Engineer’s View of the World • Hardware diagnostic test suite 
The programming model of the embedded system is the 
most important information for the software engineer. 
The programming model for a microprocessor consists of 
the key attributes of the CPU that are necessary to 
abstract the processor for the purpose of software 
development. As an example of a programming model, 
consider the ARM9E-S CPU. 

• Real-time operating system (RTOS) 

• RTOS device drivers 

• Application software 

 

 Matching the Software with the Platform 
The ARM9E-S implements the ARM v5TE instruction 
set that includes the 32-bit ARM instruction set and the 
16-bit thumb instruction set. The details of the instruction 
set are an important part of the programming model. Also 
covered by the programming model are details related to 
the operating modes of the CPU, memory format, data 
types, general purpose register set, status registers, and 
interrupts and exceptions. All of these microprocessor 
details are important to the software engineer. 

 
One of the main sources of confusion for projects is how 
to match the type of software being developed with the 
correct platform or execution engine. Figure 1 presents a 
diagram of this confusion. Given five types of software 
and three or four verification platforms, where should the 
connections occur between them? Which type of software 
should be run on each type of platform? Are all hardware 
platforms required? 

  
Beyond the microprocessor, software engineers are 
interested in the memory map for the embedded system. 
For a 32-bit address space, 4GB of physical memory 
addresses can be accessed. All embedded systems use 
only a subset of this physical address space, and the 
memory map defines the location in the address space of 
various types of memory and other hardware control 
registers. The memory map may also define what 
happens if addresses are accessed where no physical 
memory exists.  

A complete methodology must define for a specific 
project which combinations of software should be run on 
each type of platform to provide the highest quality 
verification in the shortest time. 
 

 
Commonly found types of memory in an embedded 
system are ROM to hold the initial software to run on the 
CPU, flash memory, DRAM, SRAM for fast data storage, 



and memory mapped peripherals. Peripherals can be any 
dedicated hardware that is programmable from software. 
These can range from small functions such as a UART or 
timer to more complex hardware, such as a JPEG 
encoder/decoder. 
 
The combination of the microprocessor programming 
model, the memory map, and the individual hardware 
control registers form the software engineer’s view of the 
embedded system. This information becomes the ultimate 
authority for all software development and is available in 
the form of technical manuals on the microprocessor, 
combined with the system specific memory map supplied 
by the hardware engineers.  
 
Hardware Engineer’s View of the World 
Hardware engineers have a different view of the 
embedded system. Although the internal operation of the 
microprocessor is important to software engineers, the 
internal workings of the CPU are much less important to 
hardware engineers, and the bus interface is most 
significant. For the hardware design to work correctly, 
the logic connected to the microprocessor must obey all 
of the rules of the bus protocol.  If the rules of the bus 
protocol are obeyed, the details of the software tasks are 
not important.  
All microprocessors use some type of protocol to read 
and write memory. To the hardware engineer, the 
microprocessor is viewed as a series of memory reads 
and writes. These reads and writes are used for fetching 
instructions, accessing peripherals, doing DMA transfers, 
and many other things, but in the end, they are nothing 
more than a sequence of reads and writes on the bus. For 
years, hardware engineers have used a bus functional 
model (BFM) to abstract the microprocessor into a model 
of its bus. More recently, this has been described as 
transaction-based verification since it views the 
microprocessor as a bus transaction generator. 
 
 
Co-Verification Methodology 
 
The solution to implement a co-verification methodology 
for ARM SoC verification and to reconcile the different 
views of hardware and software engineers is to combine a 
single platform that provides logic simulation, simulation 
acceleration, and in-circuit emulation with application-
specific solutions for co-verification and transaction-
based verification. Consider as an example an SoC that 
includes an ARM microprocessor. As described in the 
previous section, hardware engineers are interested in bus 
transactions of the CPU. This requires a transaction-based 
interface that works well with the verification platform 
for use during logic simulation, acceleration, and 
emulation modes.  Since it needs to be used with logic 
simulation and later with acceleration and emulation, it 

cannot be constructed such that it will be a bottleneck to 
overall acceleration and emulation performance. Software 
engineers require good CPU models and debugging tools. 
Additionally, the system verification methodology must 
accommodate these various views of the system for 
verifying the software itself, and the interaction of the 
software and the hardware.  
 
For each of the five different types of software, they will 
prefer either a software model of the ARM CPU or a 
hardware model of the ARM CPU. The three primary 
verification platform execution methods combined with 
the three representations of the ARM microprocessor 
form the matrix of nine modes of operation shown in 
Figure 2. 
 

 
Figure 2 

The next sections describe how each type of software can 
choose to be executed by either a software or hardware 
model of the ARM CPU using one or more of the 
platform’s execution modes. 
 
System Initialization and HAL Development 
Many complex SoC projects use nothing more than a 
full-functional model of the microprocessor core in a 
logic simulator to write and debug this code. Software 
debugging with waveforms requires a true guru who 
understands hardware and software and can disassemble 
instructions in his head using instruction fetches on the 
data bus. 
 
For the ARM SoC example, the ideal debugging solution 
for early development of system initialization and HAL 
code is one based on a cycle-accurate instruction set 
simulation model tightly coupled to a logic simulator 
containing the SoC hardware design. This provides 
interactive, graphical software debugging for the software 
engineer to single step through the code and verify 
register and memory contents with excellent flexibility 
and control.  Simulation performance is less important 
because the code must be verified line-by-line, and the 
number of lines of code is relatively small.  This situation 
is labeled as box 2 in the matrix in Figure 2. 



 
Diagnostics 
During this development of diagnostic tests, the logic 
simulator becomes the bottleneck of the verification 
environment. As tests run longer and the number of tests 
increases, it becomes more difficult both to verify the 
entire hardware design and to continue to run old tests as 
hardware and software errors are fixed. This phase is also 
the most crucial since it is where most hardware bugs are 
found. Debugging tools for both software and hardware 
at this stage are very important. 
The best solution uses simulation acceleration to increase 
the simulation performance over what is possible using 
an ordinary software simulator.  A simulation 
environment running at 10 to 100 Hz is not fast enough 
for engineers to run and test. Moreover, the memory 
optimization techniques commonly used by co-
verification tools are not useful because the main purpose 
of the diagnostics is hardware verification. A simulation 
acceleration system that runs at speeds of 1 to 10 kHz is 
the ideal platform for simulation performance and 
debugging. The use of simulation acceleration with the 
software model of the ARM is labeled as box 5 in the 
matrix in Figure 2. 
 
RTOS and Device Drivers 
The initial RTOS port is a good place to take advantage 
of memory optimizations commonly used in co-
verification, such as software memory models. These 
memory optimizations retrieve instructions at a much 
faster rate than using logic simulation. The result is less 
simulation detail on how the ARM SoC would work, but 
increased performance. Since the instruction fetch path is 
well verified, using the memory optimizations makes 
sense, rather than going back in the diagnostic test suite 
as a workaround for a low logic simulator. The initial 
RTOS boot requires box 5 on the matrix in Figure 2.  
Once the RTOS is booted and stable with the selected 
device drivers, as shown in box 8, future work can be 
done using a faster execution method, such as in-circuit 
emulation. The number of hardware bugs is very small, 
so the increased performance is well worth any tradeoff 
in hardware debugging. This shifts the focus of the 
software engineers from box 5 to boxes 6 and 9. 
 
Application Software 
Application software requires the highest performance 
and possible stimulus from other sources, such as 
graphics, I/O interfaces like USB, or networking. This is 
an ideal fit for in-circuit emulation. Initial bring up for In-
Circuit Emulation (ICE) is done using In-Circuit 
Simulation (ICS). ICS connects the software simulator 
with the target board by using the emulator as a pass-
through connection to the target system. The necessary 
target boards, interfaces and test equipment are 

assembled in the lab for ICE.   This represents a shift 
from box 3 to box 9 on the matrix in Figure 2. 
 
Testbench Development 
Hardware engineers are focused on making sure the bus 
interface logic connected to the microprocessor works 
correctly. The bus functional model (BFM) allows this to 
be done efficiently without requiring the overhead of a 
full functional model (FFM) and software to run on the 
CPU. There are many different kinds of BFMs available 
from IP companies, EDA vendors, and microprocessor 
suppliers. Unfortunately, all of them have been created 
using C/C++, verification languages or behavioral 
Verilog or VHDL. These languages are suitable for logic 
simulation, but are not efficient for simulation 
acceleration and emulation. The co-verification 
methodology requires a BFM that runs well for all phases 
of verification, from the start of a project, as shown in 
box 1 in Figure 2, moving to acceleration and emulation 
for directed and random testing, as shown in boxes 4 and 
7. The methodology must also incorporate a hardware 
and software view of the set of status registers and an 
easily adaptable model of the system’s physical address 
space. The hardware verification environment must 
increasingly consider the need for easy maintenance and 
reuse in subsequent system adaptations. 
 
To achieve this flexibility, a transaction-based interface 
to synthesizable BFM for the CPU bus is ideal. By 
operating at the transaction level, the communication is 
minimized between the testbench and the verification 
platform. Using a synthesizable BFM and a transaction-
based interface to the verification platform optimizes 
performance, while simultaneously allowing for the use 
of C/C++ or verification languages to create testbenches. 
A BFM that works the same way from simulation to 
emulation and provides the required performance, while 
simultaneously following the industry trend toward 
verification automation, is an important part of a unified 
verification methodology. 
 
 
Matrix Coverage Is Not Enough 
 
At first glance it may seem possible to build a good 
methodology to integrate hardware and software if all 
nine boxes on the matrix are covered. This coverage 
could be obtained by finding different tools for logic 
simulation, acceleration and emulation. Point tools can 
also be assembled for co-verification, bus models, and 
bus protocol checking. Of course, the cost to purchase all 
these tools and the time to evaluate all of them separately 
and deal with multiple vendors would be difficult. 
Unfortunately, the methodology would not be as strong 
as it could be because the tools do not work together. 
More than matrix coverage, what is required is 



interoperability of the boxes of the matrix. The ability to 
easily switch between boxes without changing platforms 
or totally rebuilding the environment is a key timesaver. 
Increasingly important is the flexibility to quickly change 
the register definitions to optimize the hardware/software 
architecture, and to move the physical address space to 
optimize system performance and complete the system 
verification. 
 
 
Communication Gap 
 
In addition to having a single system to perform all levels 
of verification, one of the major barriers that prevents a 
design team from performing co-verification is the lack 
of a common communication medium when a problem 
exists.  Debugging a co-verification issue may at times 
take longer than running the test, because problem 
isolation involves multiple teams with different expertise 
working in a lab environment and viewing verification 
data in different formats. 
 
Compounding the problem, software and hardware teams 
debug using different techniques and view the problem 
from different perspectives.  The software team works 
with software models and debugs using software source-
level tracing and memory and register viewing.   The 
hardware team works with hardware design languages 
and debugs by viewing waveforms with history values 
associated with simulation times of read and write 
operations.  As a result, when the software team detects a 
potential hardware problem, it cannot be described in 
hardware terms (time and signal value), nor is it easy to 
transfer an independent test case to the hardware 
engineers for further review.  Much of this confusion can 
be eliminated by using an integrated set of debugging 
tools and models on the common verification platform 
following a unified system verification methodology. 
 
 
Conclusion 
 
The combination of a single platform that provides logic 
simulation, simulation acceleration, and in-circuit 
emulation with application-specific solutions for co-
verification and transaction-based verification is a major 
improvement over the loose integration of many point 
tools being used by engineers today. Furthermore, 
combining many point tools to define a methodology is 
not a good solution, because the tools will not work well 
together. Interoperability between the platform and the 
application of transaction-based verification and HW/SW 
co-verification is essential to work smarter, not harder.  
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