
ARM SoC Verification Matrix Improves HW/SW Co-Verification

Jason Andrews

Verisity Design, Inc., Mountain View, USA

Abstract

Verification efficiency is the latest topic being discussed
among engineers and EDA vendors. In order to work
smarter, engineers can make improvements to the overall
verification process, by automating best practices rather
than focusing on incremental speed improvements in
individual point tools.
This article describes how engineers doing ARM SoC
verification can be more efficient through automated
process solutions based on a single, reconfigurable
verification system, applications, and a unified system
verification methodology to allow engineers to execute
hardware and software tests with a flexible mix of
performance and debugging.

The State of Verification

Verification efficiency is the latest topic being discussed
among engineers and EDA vendors. Engineers are
wondering how to leverage all of the point tools that have
been developed to solve specific issues to create a single,
cohesive system verification methodology for hardware
and software verification.

In order to work smarter, engineers can make
improvements to the overall verification process, by
automating best practices rather than focusing on
incremental speed improvements in individual point
tools. In addition, engineers can improve in one of the
three areas that take up their time during the verification
process:

Verification environment creation is the time spent to
construct the environment, including testbenches,
testcases, models, etc. This process is mostly manual with
some automation in the area of testbench generation.

Execution is the time spent to run the test scenarios.
Increasing raw performance is the primary way to run the
test scenarios in a shorter period of time.

Interpreting results and debugging is the time spent to
decide if test scenarios are working and how to find and
fix problems for scenarios that are not working. This is
also a mostly manual process with some automation in
the area of functional coverage.

This article describes how engineers doing ARM SoC
verification can be more efficient through automated
process solutions based on a single, reconfigurable
verification system, applications, and a unified system
verification methodology to allow engineers to execute
hardware and software tests with a flexible mix of
performance and debugging.

The Three Components of HW/SW Co-Verification

A Verification Process Automation (VPA) solution for
SoC verification integrates pre-proven best practices,
automation and analyses to simplify verification. VPA
spans all stages of the SoC verification process, from the
block/unit level, to the chip/system level and to the
project level. Specifically for HW/SW co-verification, a
unified system verification methodology (SVM) must
provide not only best-in-class point tools in each area, but
also complete interoperability between them. Three
components of HW/SW co-verification are:

1. Verification platform

2. Hardware verification tools and techniques

3. Embedded system software testing and debugging
tools and techniques

Verification Platform
The verification platform is the method used to execute a
description of the hardware design. It has other common
names, such as execution engine or virtual prototype. The
hardware design process consists of describing the
hardware using one of the two common hardware
description languages, Verilog or VHDL, or a high-level
modeling language, such as SystemC. This HDL
representation of the hardware design can be executed
using any number of platforms or execution engines.

Four distinct methods used for the execution of the
hardware design that have been identified and are
commonly used in SoC design:

• Logic Simulation

• Simulation Acceleration

• In-Circuit Emulation

• Hardware Prototyping

Each hardware execution method has specific debugging
techniques associated with it − each with its own set of
benefits and limitations. The methods range from the
slowest execution method, with the most debugging, to
the fastest, with less debugging.

Throughout this paper, the following definitions are used:

Software Simulation refers to an event-based logic
simulator that operates by propagating input changes
through a design until a steady state condition is reached.
Software simulators run on workstations and use Verilog
or VHDL as a simulation language to describe the design
and the testbench. Some portions of the hardware may be
more abstractly modeled using a high-level language,
such as SystemC.

Simulation Acceleration refers to the process of
mapping the synthesizable portion of the design into a
hardware platform specifically designed to increase
performance by evaluating the HDL constructs in
parallel. The remaining portions of the simulation are not
mapped into hardware, but run in a software simulator.
The software simulator works in conjunction with the
hardware platform to exchange simulation data.
Removing most of the simulation events from the
software simulator and evaluating them in parallel using
dedicated hardware increases performance.

Emulation refers to the process of mapping an entire
design into a hardware platform that performs parallel
processing to increase performance. There is no constant
connection to the workstation during execution, and the
hardware platform receives no input from the
workstation. By eliminating the connection to the
workstation, the hardware platform now runs at its full
speed and does not need to wait for any communication.

In-Circuit refers to the use of external hardware coupled
to a hardware platform for the purpose of providing a
more realistic environment for the design being
simulated. This hardware commonly takes the form of
circuit boards, sometimes called target boards or a
target system, and test equipment cabled into the
hardware platform. Emulation without the use of any
target system is defined as targetless emulation.

Hardware Prototype refers to the construction of
custom hardware or the use of reusable hardware
(breadboard) to construct a hardware representation of
the system. A prototype is a representation of the final
system that can be constructed faster and is available
sooner than the actual product. This is achieved by
making tradeoffs in product requirements, such as

performance and packaging. A common path to a
prototype is to save time by substituting programmable
logic for ASICs.

Hardware Verification
Hardware verification describes the tools and techniques
used to decide if a hardware design is operating correctly.
An entire industry has emerged to provide products that
augment the verification platform to help engineers
develop test scenarios and interpret the results. Special
verification languages have been designed to improve
efficiency and verification quality. Other commonly used
tools are code coverage, lint tools, and debugging tools to
visualize results.

To rapidly compose the system verification environment,
a successful methodology enables reuse of the
components. In addition, a successful methodology
supports a variety of software connection techniques and
switching between them as well as the ability to apply it
to front-end transaction-level analysis and post-silicon
validation.

Embedded System Software
The final test for the hardware design is to correctly run
the embedded system software. Even if the hardware can
successfully run all of the embedded software, there is no
guarantee it is bug free, but it does indicate a fairly
healthy design. HW/SW co-verification is the best way to
operate more efficiently by making sure all of the
software works with the hardware before the hardware
design is fabricated. Co-verification provides two
primary benefits:

1. Software engineers have much earlier access to the

hardware design. This allows software designers to
develop code and test it concurrently with hardware
design and verification. Performing these activities in
parallel shortens the project schedule, compared with
the serial method of waiting for the prototype to
begin software testing. Moreover, the early
involvement of the software team results in a much
better understanding of the underlying hardware
operation.

2. Co-verification provides additional stimulus for the
hardware design. In fact, it can provide the true
stimulus that will occur in the embedded system.
This improves hardware verification when compared
to using a contrived testbench that may or may not
represent real system conditions.

By performing HW/SW co-verification, a wide range of
problems can be found and fixed prior to silicon, such as
register map discrepancies, problems in the boot code,
errors in DMA controller programming, RTOS boot and
configuration errors, bus pipelining problems, and cache

coherency mishaps. Some of the errors will be software
problems and some hardware-related. Addressing these
issues must be done using a logical and well-conceived
co-verification strategy.

Co-verification requires that accurate microprocessor
models and software debugging tools be available to
software engineers as early as possible. It also requires
that the verification platform provide the best mix of
performance and debugging for software engineers to
work effectively with hardware engineers. The system
verification methodology supports the easy transition to
co-verification and between the various hardware
modeling techniques, and adapts to the growing scope of
system verification, including application software.

Figure 1

Different Perspectives of Software and Hardware
Engineers

Five distinct types of embedded system software have
been identified; the software content (that is, lines of
code) increases with each successive step:

Before discussing the specifics of methodology and tools,
it is important to recall that software engineers view the
world very differently from hardware engineers. Here is a
brief review of the different perspectives of software and
hardware engineers.

• System initialization software and hardware

abstraction layer (HAL)
Software Engineer’s View of the World • Hardware diagnostic test suite
The programming model of the embedded system is the
most important information for the software engineer.
The programming model for a microprocessor consists of
the key attributes of the CPU that are necessary to
abstract the processor for the purpose of software
development. As an example of a programming model,
consider the ARM9E-S CPU.

• Real-time operating system (RTOS)

• RTOS device drivers

• Application software

 Matching the Software with the Platform
The ARM9E-S implements the ARM v5TE instruction
set that includes the 32-bit ARM instruction set and the
16-bit thumb instruction set. The details of the instruction
set are an important part of the programming model. Also
covered by the programming model are details related to
the operating modes of the CPU, memory format, data
types, general purpose register set, status registers, and
interrupts and exceptions. All of these microprocessor
details are important to the software engineer.

One of the main sources of confusion for projects is how
to match the type of software being developed with the
correct platform or execution engine. Figure 1 presents a
diagram of this confusion. Given five types of software
and three or four verification platforms, where should the
connections occur between them? Which type of software
should be run on each type of platform? Are all hardware
platforms required?

Beyond the microprocessor, software engineers are
interested in the memory map for the embedded system.
For a 32-bit address space, 4GB of physical memory
addresses can be accessed. All embedded systems use
only a subset of this physical address space, and the
memory map defines the location in the address space of
various types of memory and other hardware control
registers. The memory map may also define what
happens if addresses are accessed where no physical
memory exists.

A complete methodology must define for a specific
project which combinations of software should be run on
each type of platform to provide the highest quality
verification in the shortest time.

Commonly found types of memory in an embedded
system are ROM to hold the initial software to run on the
CPU, flash memory, DRAM, SRAM for fast data storage,

and memory mapped peripherals. Peripherals can be any
dedicated hardware that is programmable from software.
These can range from small functions such as a UART or
timer to more complex hardware, such as a JPEG
encoder/decoder.

The combination of the microprocessor programming
model, the memory map, and the individual hardware
control registers form the software engineer’s view of the
embedded system. This information becomes the ultimate
authority for all software development and is available in
the form of technical manuals on the microprocessor,
combined with the system specific memory map supplied
by the hardware engineers.

Hardware Engineer’s View of the World
Hardware engineers have a different view of the
embedded system. Although the internal operation of the
microprocessor is important to software engineers, the
internal workings of the CPU are much less important to
hardware engineers, and the bus interface is most
significant. For the hardware design to work correctly,
the logic connected to the microprocessor must obey all
of the rules of the bus protocol. If the rules of the bus
protocol are obeyed, the details of the software tasks are
not important.
All microprocessors use some type of protocol to read
and write memory. To the hardware engineer, the
microprocessor is viewed as a series of memory reads
and writes. These reads and writes are used for fetching
instructions, accessing peripherals, doing DMA transfers,
and many other things, but in the end, they are nothing
more than a sequence of reads and writes on the bus. For
years, hardware engineers have used a bus functional
model (BFM) to abstract the microprocessor into a model
of its bus. More recently, this has been described as
transaction-based verification since it views the
microprocessor as a bus transaction generator.

Co-Verification Methodology

The solution to implement a co-verification methodology
for ARM SoC verification and to reconcile the different
views of hardware and software engineers is to combine a
single platform that provides logic simulation, simulation
acceleration, and in-circuit emulation with application-
specific solutions for co-verification and transaction-
based verification. Consider as an example an SoC that
includes an ARM microprocessor. As described in the
previous section, hardware engineers are interested in bus
transactions of the CPU. This requires a transaction-based
interface that works well with the verification platform
for use during logic simulation, acceleration, and
emulation modes. Since it needs to be used with logic
simulation and later with acceleration and emulation, it

cannot be constructed such that it will be a bottleneck to
overall acceleration and emulation performance. Software
engineers require good CPU models and debugging tools.
Additionally, the system verification methodology must
accommodate these various views of the system for
verifying the software itself, and the interaction of the
software and the hardware.

For each of the five different types of software, they will
prefer either a software model of the ARM CPU or a
hardware model of the ARM CPU. The three primary
verification platform execution methods combined with
the three representations of the ARM microprocessor
form the matrix of nine modes of operation shown in
Figure 2.

Figure 2

The next sections describe how each type of software can
choose to be executed by either a software or hardware
model of the ARM CPU using one or more of the
platform’s execution modes.

System Initialization and HAL Development
Many complex SoC projects use nothing more than a
full-functional model of the microprocessor core in a
logic simulator to write and debug this code. Software
debugging with waveforms requires a true guru who
understands hardware and software and can disassemble
instructions in his head using instruction fetches on the
data bus.

For the ARM SoC example, the ideal debugging solution
for early development of system initialization and HAL
code is one based on a cycle-accurate instruction set
simulation model tightly coupled to a logic simulator
containing the SoC hardware design. This provides
interactive, graphical software debugging for the software
engineer to single step through the code and verify
register and memory contents with excellent flexibility
and control. Simulation performance is less important
because the code must be verified line-by-line, and the
number of lines of code is relatively small. This situation
is labeled as box 2 in the matrix in Figure 2.

Diagnostics
During this development of diagnostic tests, the logic
simulator becomes the bottleneck of the verification
environment. As tests run longer and the number of tests
increases, it becomes more difficult both to verify the
entire hardware design and to continue to run old tests as
hardware and software errors are fixed. This phase is also
the most crucial since it is where most hardware bugs are
found. Debugging tools for both software and hardware
at this stage are very important.
The best solution uses simulation acceleration to increase
the simulation performance over what is possible using
an ordinary software simulator. A simulation
environment running at 10 to 100 Hz is not fast enough
for engineers to run and test. Moreover, the memory
optimization techniques commonly used by co-
verification tools are not useful because the main purpose
of the diagnostics is hardware verification. A simulation
acceleration system that runs at speeds of 1 to 10 kHz is
the ideal platform for simulation performance and
debugging. The use of simulation acceleration with the
software model of the ARM is labeled as box 5 in the
matrix in Figure 2.

RTOS and Device Drivers
The initial RTOS port is a good place to take advantage
of memory optimizations commonly used in co-
verification, such as software memory models. These
memory optimizations retrieve instructions at a much
faster rate than using logic simulation. The result is less
simulation detail on how the ARM SoC would work, but
increased performance. Since the instruction fetch path is
well verified, using the memory optimizations makes
sense, rather than going back in the diagnostic test suite
as a workaround for a low logic simulator. The initial
RTOS boot requires box 5 on the matrix in Figure 2.
Once the RTOS is booted and stable with the selected
device drivers, as shown in box 8, future work can be
done using a faster execution method, such as in-circuit
emulation. The number of hardware bugs is very small,
so the increased performance is well worth any tradeoff
in hardware debugging. This shifts the focus of the
software engineers from box 5 to boxes 6 and 9.

Application Software
Application software requires the highest performance
and possible stimulus from other sources, such as
graphics, I/O interfaces like USB, or networking. This is
an ideal fit for in-circuit emulation. Initial bring up for In-
Circuit Emulation (ICE) is done using In-Circuit
Simulation (ICS). ICS connects the software simulator
with the target board by using the emulator as a pass-
through connection to the target system. The necessary
target boards, interfaces and test equipment are

assembled in the lab for ICE. This represents a shift
from box 3 to box 9 on the matrix in Figure 2.

Testbench Development
Hardware engineers are focused on making sure the bus
interface logic connected to the microprocessor works
correctly. The bus functional model (BFM) allows this to
be done efficiently without requiring the overhead of a
full functional model (FFM) and software to run on the
CPU. There are many different kinds of BFMs available
from IP companies, EDA vendors, and microprocessor
suppliers. Unfortunately, all of them have been created
using C/C++, verification languages or behavioral
Verilog or VHDL. These languages are suitable for logic
simulation, but are not efficient for simulation
acceleration and emulation. The co-verification
methodology requires a BFM that runs well for all phases
of verification, from the start of a project, as shown in
box 1 in Figure 2, moving to acceleration and emulation
for directed and random testing, as shown in boxes 4 and
7. The methodology must also incorporate a hardware
and software view of the set of status registers and an
easily adaptable model of the system’s physical address
space. The hardware verification environment must
increasingly consider the need for easy maintenance and
reuse in subsequent system adaptations.

To achieve this flexibility, a transaction-based interface
to synthesizable BFM for the CPU bus is ideal. By
operating at the transaction level, the communication is
minimized between the testbench and the verification
platform. Using a synthesizable BFM and a transaction-
based interface to the verification platform optimizes
performance, while simultaneously allowing for the use
of C/C++ or verification languages to create testbenches.
A BFM that works the same way from simulation to
emulation and provides the required performance, while
simultaneously following the industry trend toward
verification automation, is an important part of a unified
verification methodology.

Matrix Coverage Is Not Enough

At first glance it may seem possible to build a good
methodology to integrate hardware and software if all
nine boxes on the matrix are covered. This coverage
could be obtained by finding different tools for logic
simulation, acceleration and emulation. Point tools can
also be assembled for co-verification, bus models, and
bus protocol checking. Of course, the cost to purchase all
these tools and the time to evaluate all of them separately
and deal with multiple vendors would be difficult.
Unfortunately, the methodology would not be as strong
as it could be because the tools do not work together.
More than matrix coverage, what is required is

interoperability of the boxes of the matrix. The ability to
easily switch between boxes without changing platforms
or totally rebuilding the environment is a key timesaver.
Increasingly important is the flexibility to quickly change
the register definitions to optimize the hardware/software
architecture, and to move the physical address space to
optimize system performance and complete the system
verification.

Communication Gap

In addition to having a single system to perform all levels
of verification, one of the major barriers that prevents a
design team from performing co-verification is the lack
of a common communication medium when a problem
exists. Debugging a co-verification issue may at times
take longer than running the test, because problem
isolation involves multiple teams with different expertise
working in a lab environment and viewing verification
data in different formats.

Compounding the problem, software and hardware teams
debug using different techniques and view the problem
from different perspectives. The software team works
with software models and debugs using software source-
level tracing and memory and register viewing. The
hardware team works with hardware design languages
and debugs by viewing waveforms with history values
associated with simulation times of read and write
operations. As a result, when the software team detects a
potential hardware problem, it cannot be described in
hardware terms (time and signal value), nor is it easy to
transfer an independent test case to the hardware
engineers for further review. Much of this confusion can
be eliminated by using an integrated set of debugging
tools and models on the common verification platform
following a unified system verification methodology.

Conclusion

The combination of a single platform that provides logic
simulation, simulation acceleration, and in-circuit
emulation with application-specific solutions for co-
verification and transaction-based verification is a major
improvement over the loose integration of many point
tools being used by engineers today. Furthermore,
combining many point tools to define a methodology is
not a good solution, because the tools will not work well
together. Interoperability between the platform and the
application of transaction-based verification and HW/SW
co-verification is essential to work smarter, not harder.

	Verisity Design, Inc., Mountain View, USA
	Abstract

	The State of Verification
	The Three Components of HW/SW Co-Verification
	Verification Platform
	Hardware Verification
	Embedded System Software

	Matching the Software with the Platform
	Different Perspectives of Software and Hardware Engineers
	Software Engineer’s View of the World
	Hardware Engineer’s View of the World

	Co-Verification Methodology
	System Initialization and HAL Development
	Diagnostics
	RTOS and Device Drivers
	Application Software
	Testbench Development

	Matrix Coverage Is Not Enough
	Communication Gap
	Conclusion

