
Hardware and Software Verification
for ARM SoC Design

EDP 2004

Jason Andrews
jason@verisity.com

Definition of SoCDefinition of SoC

System-on-Chip (SoC)
A single chip that includes one or more
microprocessors, application specific custom
logic functions, and embedded system
software

System-on-Board (SoB)
A design using one or more microprocessors
along with multiple IC packages on a board

SoC CharacteristicsSoC Characteristics
■ One or more microprocessors on a chip
■ Use of microprocessor IP such as ARM, MIPS, or

Tensilica
■ Often include DSP cores
■ Integration, performance, and power are crucial
■ Cost to develop is high
■ High content of custom hardware

! 1M gates is quickly becoming a small design
! 2-4M gates is typical
! 10M gates is large

■ One or more microprocessors on a chip
■ Use of microprocessor IP such as ARM, MIPS, or

Tensilica
■ Often include DSP cores
■ Integration, performance, and power are crucial
■ Cost to develop is high
■ High content of custom hardware

! 1M gates is quickly becoming a small design
! 2-4M gates is typical
! 10M gates is large

Examples are Everywhere

Integration of Hardware and SoftwareIntegration of Hardware and Software

■ First chance for software to meet hardware
■ Crucial part of project
■ Sooner is better than later
■ Too early makes for unnecessary work

■ First chance for software to meet hardware
■ Crucial part of project
■ Sooner is better than later
■ Too early makes for unnecessary work

Verification PlatformVerification Platform
■ Called hardware execution engine or virtual

prototype
■ 4 types

! Logic simulation
! Simulation acceleration
! In-circuit emulation
! Hardware prototype

■ Called hardware execution engine or virtual
prototype

■ 4 types
! Logic simulation
! Simulation acceleration
! In-circuit emulation
! Hardware prototype

Characterized by performance
and ability to debug

Logic SimulationLogic Simulation
■ Most commonly used verification platform
■ Verilog and VHDL used to describe design
■ Verification environment can be described in many

different languages:
! HDL
! Special purpose verification language such as e
! General purpose language such as C/C++ or SystemC

■ Limited performance
! 1000 cycles/sec for 1M gate design
! 100 cycles/sec for 5M gate design
! 1 cycle/sec for 50M gate design

■ Referred to as “software simulation”
■ Event-driven simulation algorithm

■ Most commonly used verification platform
■ Verilog and VHDL used to describe design
■ Verification environment can be described in many

different languages:
! HDL
! Special purpose verification language such as e
! General purpose language such as C/C++ or SystemC

■ Limited performance
! 1000 cycles/sec for 1M gate design
! 100 cycles/sec for 5M gate design
! 1 cycle/sec for 50M gate design

■ Referred to as “software simulation”
■ Event-driven simulation algorithm

Simulation AccelerationSimulation Acceleration

■ Workstation is master and generates the clock
■ Parallel processing of design improves performance

! 20k cycles/sec to 100k cycles/sec
■ Performance depends on:

! Speed of the hardware engine
! Amount of time spent on the workstation

■ Workstation is master and generates the clock
■ Parallel processing of design improves performance

! 20k cycles/sec to 100k cycles/sec
■ Performance depends on:

! Speed of the hardware engine
! Amount of time spent on the workstation

Targetless EmulationTargetless Emulation

! Entire design and testbench mapped into
hardware

! Hardware becomes the master
! Clocks generated in emulator
! No external hardware used for stimulus

In-Circuit EmulationIn-Circuit Emulation

! Uses external hardware for stimulus
– Live stimulus for applications such as PCI, Ethernet,

UART, and JTAG
– 250k cycles/sec to 750k cycles/sec

Hardware PrototypeHardware Prototype
■ Alternative hardware representation of the

design
■ Available sooner than final design
■ Willing to made trade-offs in size,

performance, power, etc. in exchange for
early availability

■ Can be a design project of its own
! Interconnect management
! Technology issues such as clocking differences

■ Alternative hardware representation of the
design

■ Available sooner than final design
■ Willing to made trade-offs in size,

performance, power, etc. in exchange for
early availability

■ Can be a design project of its own
! Interconnect management
! Technology issues such as clocking differences

Platform AttributesPlatform Attributes

Fast
Run in-circuit, real
environment

Serve as an evaluation or
demonstration system

Flexible
Connects to all types of
models

Works with logic simulation

Easy
Easy to compile designs

Easy to debug

Runs and feels like a logic
simulator

Cost
To model entire system

Replicate for multiple users

To support

Software Engineer’s WorldSoftware Engineer’s World

Interrupts are vectors
Bus Interface means memory data

Hardware Engineer’s WorldHardware Engineer’s World

Bus Interface and Interrupts are Pins

Software Debugging MethodsSoftware Debugging Methods

■ Completely interactive
■ Historically done in a lab with a board running 25

MHz or faster
■ Use printf() statement to trace execution and

variables
■ Trace software execution with source-level debugger
■ Use breakpoints to stop execution and inspect

memory (variables and data structures), call stack,
and register contents

■ Iteratively reboot/restart and adjust breakpoints until
bugs are found

■ Completely interactive
■ Historically done in a lab with a board running 25

MHz or faster
■ Use printf() statement to trace execution and

variables
■ Trace software execution with source-level debugger
■ Use breakpoints to stop execution and inspect

memory (variables and data structures), call stack,
and register contents

■ Iteratively reboot/restart and adjust breakpoints until
bugs are found

Hardware Debugging MethodsHardware Debugging Methods

■ Run logic simulation at 10-100 Hz
■ Use print statements (or lack of print

statements) to detect errors
■ Use of waveform dumps to examine signal

values until bugs are found

■ Run logic simulation at 10-100 Hz
■ Use print statements (or lack of print

statements) to detect errors
■ Use of waveform dumps to examine signal

values until bugs are found

Hardware/Software Co-Verification Hardware/Software Co-Verification
" Executing embedded system software on

a simulated representation of embedded
system hardware

" Provides verification and debugging
capability for both hardware and software

" Early testing of hardware-specific
software

" No waiting for prototypes in the
lab

" Additional test stimulus for
hardware

" Better than contrived testbench

" Find real-world issues earlier in
design process

" Increased design confidence

Benefits

The State of VerificationThe State of Verification

■ Verification Efficiency
! Verification Environment Creation

– Environment, models, test generation
– Methodology and Process Automation

! Execution
– Performance is king

! Interpretation of Results and Debugging
– Find and fix problems
– Coverage

■ Verification Efficiency
! Verification Environment Creation

– Environment, models, test generation
– Methodology and Process Automation

! Execution
– Performance is king

! Interpretation of Results and Debugging
– Find and fix problems
– Coverage

Language-Neutral Software SimulationLanguage-Neutral Software Simulation

■ Native code compiled, single kernel mixed-HDL
software simulator

! VHDL IEEE1076-1993 except for VITAL acceleration
! Verilog IEEE1364-1995, 1364-2001, PLI 1.0 and PLI 2.0

■ Arbitrarily mixing of VHDL and Verilog blocks
■ Common user interface for interactive and post-

processing debug
■ Common API support with PLI for Verilog and

VHDL

■ Native code compiled, single kernel mixed-HDL
software simulator

! VHDL IEEE1076-1993 except for VITAL acceleration
! Verilog IEEE1364-1995, 1364-2001, PLI 1.0 and PLI 2.0

■ Arbitrarily mixing of VHDL and Verilog blocks
■ Common user interface for interactive and post-

processing debug
■ Common API support with PLI for Verilog and

VHDL

Acceleration and EmulationAcceleration and Emulation

■ ASIC gate capacity up to 50MG
! Expandable to 100MG

■ Extended memory capacity up to 2.5GB
■ On-board memory capacity up to 48MB
■ Internal memory capacity up to 506Mbits
■ I/O Capacity up to 1940
■ Performance of up to 1MHz
■ Multi-purpose hardware platform for simulation,

acceleration and in-circuit verification

■ ASIC gate capacity up to 50MG
! Expandable to 100MG

■ Extended memory capacity up to 2.5GB
■ On-board memory capacity up to 48MB
■ Internal memory capacity up to 506Mbits
■ I/O Capacity up to 1940
■ Performance of up to 1MHz
■ Multi-purpose hardware platform for simulation,

acceleration and in-circuit verification

Types of Embedded System SoftwareTypes of Embedded System Software

■ System initialization software and hardware
abstraction layer (HAL)

■ Hardware diagnostic test suite
■ Real-time operating system (RTOS)
■ RTOS device drivers
■ Application software

■ System initialization software and hardware
abstraction layer (HAL)

■ Hardware diagnostic test suite
■ Real-time operating system (RTOS)
■ RTOS device drivers
■ Application software

SoC Methodology ConfusionSoC Methodology Confusion

Types of Embedded Software

1. System initialization software and
hardware abstraction layer

2. Hardware diagnostic test suite

3. Real-time operating system (RTOS)

4. RTOS device drivers

5. Application software

Hardware Representation

A. Logic Simulation

B. Simulation Acceleration

C. Hardware Emulation

D. Hardware Prototyping

Performance vs. Debugging

• Length of tests

• Probability of finding bugs in hardware

• Probability of finding bugs in software

?

?

Which software should be run on each
representation of the hardware design?

Three Phases in SoC VerificationThree Phases in SoC Verification

Logic Simulation Simulation Acceleration Hardware Emulation Hardware Prototyping

System initialization
and hardware
abstraction layer

Real-time operating
system (RTOS)

RTOS device drivers

Application software

Simulation Performance (cycles/sec)

Hardware is theoretically
“known good”

Hardware Bugs

So
ft

w
a r

e
C

om
p l

ex
ity

Hardware
Verification

HW/SW
Co-Verification

Software
Development

Hardware and
Software Bugs Software Bugs

1 100 1000 10,000 100k 1M 10M

Hardware
diagnostics

The Verification MatrixThe Verification Matrix

Software
Logic
Simulation

Simulation
Acceleration

In-Circuit
Emulation

Transaction
based model of
CPU bus

Software
model of
ARM CPU

Hardware
Model of
ARM CPU

Block
level
testing

Initialization
Software

Diagnostic
Software

Directed
Test
Generation

Random
Test
Generation

RTOS
Porting

Application
Software

Device
Drivers

In-Circuit
Interface
Testing

1 2 3

4

7

5

8

6

9

Example ARM Design to be VerifiedExample ARM Design to be Verified

AHB

Timers

AHB to APB
Bridge

A
PB

AHB
Decoder

AHB
Arbiter

AHB wrapper AHB wrapper

ARM7
CPU

64kByte

ROM/Flash/

Mask ROM Interrupt
Controller

Image
Processor

GPIO

Memory
Controller

External Bus

Ethernet

USB

DSPDual
Port RAM

Control Logic

UART

Joe is designing 1M
gate image processor

Characteristics of Hardware VerificationCharacteristics of Hardware Verification

■ Hardware design definitely has bugs
■ Hardware engineers not interested in

software unless running it is absolutely
necessary

■ Automation of testbenches, testcases, and
environment is important

■ Requires the best hardware debugging
tools

■ Performance is important but secondary
! Engineers have learned patience

■ Hardware design definitely has bugs
■ Hardware engineers not interested in

software unless running it is absolutely
necessary

■ Automation of testbenches, testcases, and
environment is important

■ Requires the best hardware debugging
tools

■ Performance is important but secondary
! Engineers have learned patience

Hardware Verification ScenarioHardware Verification Scenario

AHB

AHB
Decoder

AHB
Master

Image
Processor

Ethernet

" Joe uses testbench to perform unit testing on his design
" ARM CPU replaced by AHB master
" Utilizes acceleration or simulation depending on design size

and length of test

AHB
Arbiter

AHB
Testbench

Testbench box 1

High-Performance AHB Verification
Environment
High-Performance AHB Verification
Environment

" Synthesizable AHB master and slave
" Transaction Level API callable from C or e
" Performance optimized for acceleration architecture
" Scales to boxes 4 and 7

ca
llb

ac
k

D
M

A

Virtual Channel

User
Design
RTL

Emulation

Control &
Communication

Layer

Interface
Protocol
Layer

Simulation

Control &
Communication
Layer
(API)

Interface
Protocol

Layer
(API)

AHB

API

AHB

BFM

U
se

r
V

er
ifi

ca
tio

n
E

nv
ir

on
m

en
t

Characteristics of HW/SW Co-VerificationCharacteristics of HW/SW Co-Verification

■ Integration of hardware and software
■ Both hardware and software likely to have

bugs
■ Hardware and software engineers must

work together to resolve problems
■ Hardware debugging requires good tools
■ Software debugging requires good tools
■ Need enough performance to run tests and

provide responsive software debugging

■ Integration of hardware and software
■ Both hardware and software likely to have

bugs
■ Hardware and software engineers must

work together to resolve problems
■ Hardware debugging requires good tools
■ Software debugging requires good tools
■ Need enough performance to run tests and

provide responsive software debugging

Co-verification ScenarioCo-verification Scenario

AHB

AHB to APB
Bridge

A
PB

AHB
Decoder

AHB
Arbiter

AHB wrapper

ARM7
CPU

64kByte

ROM/Flash/

Mask ROM Interrupt
Controller

Memory
Controller

External Bus
" Joe works with software

engineer to write diagnostics
to verify DMA and interrupts

" ARM CPU replaced by co-
verification model

" Utilizes simulation
acceleration

Co-Verification Model

Image
Processor

boxes 2,4

Co-Verification ArchitectureCo-Verification Architecture

A

B

Bus
Interface
Signals Bus

Cycles
ARM Cycle-

Callable Model
(CCM)

Memory
Bus

Information

Software
Debugger

R
D

I

Pin
values

C

Verilog
description of

ARM SoC

Shared
Memory

Connection

Process 1: ARM CCM Simulation

Process 2: Logic
Simulation/Acceleration

co-verification
interface

ARM
Inter
-face

ARM
remote

debugging
interface

ARM
Inter
-face Logic

Simulation
or

Acceleration

Capturing Simulation HistoryCapturing Simulation History

RTL Design
(DUT)

Embedded
ARM

Processor

Software
View

Hardware
View

SoC

Bus

Transaction
Database

Post-processing software and
HW/SW Correlation
Post-processing software and
HW/SW Correlation

Transaction
Database

Software Source
Debugger

Hardware Waveform
Display

Emulation Time
Source
Line

Characteristics of Software DevelopmentCharacteristics of Software Development
■ Software engineers assume hardware has

no bugs
! If it has bugs they go home

■ Performance is most important
! They measure slowdown from real speed

■ Good software debugging is required
! As close as possible to the final target system

■ Software engineers assume hardware has
no bugs
! If it has bugs they go home

■ Performance is most important
! They measure slowdown from real speed

■ Good software debugging is required
! As close as possible to the final target system

Software Development and System
Verification Scenario
Software Development and System
Verification Scenario

AHB

Timers

AHB to APB
Bridge

A
PB

AHB
Decoder

AHB
Arbiter

AHB wrapper AHB wrapper

ARM7
CPU

64kByte

ROM/Flash/

Mask ROM Interrupt
Controller

Image
Processor

GPIO

Memory
Controller

External Bus

Ethernet

DSPDual
Port RAM

Control Logic

UART

In-Circuit Emulation

Emulation Model

" In-circuit emulation for full system
testing

" ARM CPU replaced by in-circuit
emulation model and JTAG
Debugging

box 9

In-Circuit Emulation with ARM JTAG
Debugger
In-Circuit Emulation with ARM JTAG
Debugger

Host
Workstation

PC with
JTAG

Debugger

Interface Board
Line Card

ARM Core Module

Three Distinct ApplicationsThree Distinct Applications

■ Hardware verification
■ HW/SW co-verification
■ Software development and System Verification

■ Hardware verification
■ HW/SW co-verification
■ Software development and System Verification

Characterized by performance and
debugging

Trends and ConclusionTrends and Conclusion

■ Search for common platform
! Meet the needs of multiple applications
! Without it too much time is wasted

■ Must address the 3 applications separately
! Solutions are not the same
! Grid lock occurs if a common solution cannot be agreed upon

■ Stronger link between testbench and embedded
software
! Constrained random techniques applied to software
! Better control of hardware and software to stress design
! Better debugging views of testbench, design, and software

■ Search for common platform
! Meet the needs of multiple applications
! Without it too much time is wasted

■ Must address the 3 applications separately
! Solutions are not the same
! Grid lock occurs if a common solution cannot be agreed upon

■ Stronger link between testbench and embedded
software
! Constrained random techniques applied to software
! Better control of hardware and software to stress design
! Better debugging views of testbench, design, and software

