Analog/Mixed Signal SoC Methodologies

Missing Analog Tools – A Proposal

Steve Grout CAD Consultant

April 26, 2004

A BRIEF HISTORY OF ANALOG DESIGN

- Analog design for years has focused on circuit design and design innovation
- Main analog CAD tool efforts has been on high performance analog HDL / circuit simulation, and efforts to automated "custom" analog physical design.
- We are finally seeing new analog and mixed signal CAD beginning to emerge:
 - Analog-applicable formal methods
 - Synthesis
 - Automated analog and mixed-signal physical design.
- Still Includes MUCH Intense MANUAL detailed circuit design work by analog designers

ANALOG PRODUCTIVITY ISSUES:

- Many Industry Analysts now Stress that Analog Design Productivity needs to GROW in order to support the fast growing need for Analog SOC/DSP Chips!
- What Analog Design Productivity Issues can be improved following Approaches used for ITRS Digital SOC Issues?

But What will it take to <u>GREATLY INCREASE</u> Analog Design Productivity?

Digital Design Technology Impact Over Time

(Source: ITRS 2003 Chapter on Design Technology)

MOORE'S LAW AND ANALOG DESIGN

- Key metric of growing chip performance, complexity, density, and size
 - See SIA 2003 International Technology Roadmap for Semiconductors (ITRS)[1].

• ITRS: AMS design difficulties:

- Signal Isolation
- Integrating High Performance Digital & Analog on new processes
- Lower Supply Voltages.
- Needed Increase in AMS Productivity
- How does Moore's Law apply to and impact analog and mixed-signal chips, design, and needed productivity?

MOORE'S LAW AND ANALOG DESIGN, cont..

- Analog Designs and Analog/AMS/Digital SOC Design Numbers, Size, Complexity, Density, etc. Seem to be Growing Similar to Digital / SOC Designs.
- Some (at least Limited) Productivity improvements Are Needed in AMS tools and integrated flows
 - Similar to Digital Improvements in some Areas.
- Issue: Limited growth in Number of Analog Designers vs Need.
 - Currently Believed to be FLAT!
- Must Improve Productivity across almost ALL parts of an analog and Mixed-signal design flow.

Analog Design vs Increasing Design Complexity? (from EDPS 2002 Discussion)

	Functionality + Testability
1 K	Functionality + Testability + Wire Delay
	Functionality + Testability + Wire Delay + Power Mgmt
istors	Functionality + Testability + Wire Delay + Power Mgmt +Embedded software
Transi	Functionality <u>+ Testability +</u> Wire Delay <u>+ Power Mgmt</u> +Embedded software + Signal Integrity
#	Functionality + Testability + Wire Delay + Power Mgmt +Embedded software + Signal Integrity + Hybrid Chips
	Functionality + Testability + Wire Delay + Power Mgmt +Embedded software + Signal Integrity + Hybrid Chips + RF
1 Billion	Functionality + Testability + Wire Delay + Power Mgmt +Embedded software + Signal Integrity + Hybrid Chips + RF + Packaging
	Functionality + Testability + Wire Delay + Power Mgmt +Embedded software + Signal Integrity + Hybrid Chips + RF + Packaging + Mgmt of Physical Limits

Note: RED - Indicates Areas probably not being Effectively Addressed yet.

Analog Design vs Digital EDA Capabilities?

Note: RED - Indicates Areas probably not being Effectively Addressed yet...

ITRS 2003 Design Technology Landscape Annotated for AMS CAD Capability & Improvements

Note: Only a few blocks concern Analog-specific CAD Issues.

TAKING A LESSON FROM DIGITAL'S HISTORY -Static Timing Analysis

- System-down-to-Cell Timing used be done Manually using TIMING DIAGRAMMING
- 1971* Static Timing Analysis == Exhaustive Min-Max Worst-Case Across the Design Hierarchy- From System down to Cell/Device
- Extremely Fast Simulation/Analysis Produced Up-to-Date Accurate Timing Data after each Incremental Design Change
- Designers Only Had to Deal with BAD Timing Arcs - Fixing Worst ones First.

[* = J. S. Grout Implementation at Honeywell Large Systems.]

ANALYSIS OF ANALOG NEEDS

- KEY questions that led to the specific APPROACH for Analog Tools proposed in this paper.
 - What are the parts of a particular analog design process flow that take away from or limit Analog Designers design productivity and capacity?
 - Which Process Steps do current analog CAD tools and flows not support, or support very well?
 - Especially, which of those process steps are essentially fully MANUAL, and/or, at best, are manual-like use of individual simulation-based analysis activities.
 - Finally, which of those process steps have to be <u>REPETITIVELY</u> done for every design change, and as the design is being <u>'retuned'</u>, to meet the product specifications and requirements.

ANALOG TOOL STRATEGY -Two Prong Approach:

- Replace MANUAL Steps with Automatic Steps
- As Possible Redo Automatic Steps Similar to Digital's STA Static Timing Analysis

Requirements: Supporting Analog CAD Environment:

• 7.1.1 Automatic Re-execution On Incremental Change

• 7.1.2 Automatically Available Focused Filtered Results

- Immediately Answers/Confirms Designer's Questions about the Design
- Immediately Shows what's OK, What's BAD, What's Unusual.

• 7.1.3 Assertions - Constraints

 All Assertions, Variables, and Values available to the Design Database/HDLs

• 7.1.4 Designer Controllable

- Scripts, Dialogue Boxes for Settings
- Able to 'Import' Settings from Execution Logs, Adapt, Learn

• 7.1.5 Parameterized Circuit Design

• Lead to Designer's Tuned, Smart, Self-Learning Design Manager

Circuitry Startup Initialization

 Bring to Full Power, Voltage, Biasing, including with each Incremental change.

Circuit Biasing

- Each design iteration, return to same biasing, modes, states.
- (Help) Keep circuit conditions Unchanged.

Power Dissipation

 Show which devices/cells power are unchanged, or have moved to Unusual or Unwanted power conditions.

Analysis of Energy

 Show what circuit Energies have changed or moved to Unusual conditions. Support "all" forms of Energy.

"Virtual" Loop Opening and Circuit Constraining

- Needed to "Auto Instrument" the following Capabilities so they can be measured without explicitly changing the Design.
- Driven & Driving Circuit Conditions
- Zin, Zout, Voc, Isc
- All Gains
- Analysis of Circuit Linearity
- Analysis of Circuit Nonlinearity and Distortion
 - Measure Design Conditions with Each Incremental Change.
 - Filter for Unusual or Unwanted Change, or Changes Outof-Range

Analysis of Noise

- Any Form of Noise, including Internal Device noise, and unwanted Signals in a device's environment.
- Includes verifying noise within range, unusual or unwanted values of noise.

Analysis of Coupling

- Any form of Coupling Includes Packaging, Substrate, Isolation, Power, Ground, EMF, Particle, etc.
- Filter for coupling within range, unusual, or unwanted values of coupling.

PROPOSED SENSITIVITY-BASED ANALOG TOOLS Case for "Sensitivities" = "Active" Design Info

- Which way to change the design?
- What to do to reduce design and manufacturing process variations?
 - Use to DE-SENSITIZE the design.
- Which circuit elements, element values and tolerances, and manufacturing process variations have a critical impact on meeting the design's specifications?
 - Especially in ways the designer may not be aware.
- Without sensitivities, the designer is left to searching the design / manufacturing process variation space on his own.
- Sensitivities are necessary for doing worst-case variational and manufacturing process range design.
 - More on that issue in the following section?
- Use sensitivities as a Smart Way to Explore the design and tolerance space using Monte Carlo methods [6].

All Sensitivities

- All Rates of Change from any design element, parameter, or Aspect, to any other, including across the Design Hierarchy.
- Filtering for Sign & Values within Range, with Unwanted, or Unusual sign & values.
- Need to include Manufacturing Process Sensitivities!

All Worst Case

- Calculate Min/Max Extremes of AMS hierarchical Circuit Design.
- Use all usual/standard variational distribution approaches (normal, uniform, measured, etc.)
- Filtered for values within range, unusual or unwanted.
- Need to include Worst Case per Manufacturing Process Variations.

Proposed Analog Design Landscape:

CONCLUSIONS

- A group of analog tools has been proposed that are needed to help resolve areas in an analog design flow needing greater productivity.
- Main Strategy Move from Manual Steps to Fast Focused Incremental Results to Directly Support Main Design Efforts, Automated or Not.
- Approach arose from adapting the paradigm of a digital hierarchical static worst-case timing analyzer tool for use on analog design tools.
- Main Goal Free up the EFFORT, TIME, and MENTAL capacity of Analog designers.