

Architecture and Synthesis for Power-Efficient FPGAs

Jason Cong VLSI CAD LAB University of California, Los Angeles

Joint work with Deming Chen, Lei He, Fei Li, Yan Lin

Partially supported by NSF Grants CCR-0096383, and CCR-0306682, and Altera under the California MICRO program

igh-pe	erformance				
Applications	Best FPGA architecture	Energy (E)	Delay (t)	E ³ t	Et ³
Low-power (E ³ t)	Cluster size 10, LUT size 4, wire segment length 4, 25% buffered routing switches	0.9653	0.9904	0.8909	1.008
High- performance (Et ³)	Cluster size 12, LUT size 4, Wire segment length 4, 100% buffered routing switches	1.0502	0.8865	1.0268	0.786

 Need to explore heterogeneous FPGA fabrics, e.g. dual-Vt and dual-Vdd fabrics

	ined D	ual-vt Fa	adric		
Power s	aving				
P11.6%	aforicom	anational circ	uits		
■ 11 0/11 0 ● 14.6%	for seam	ential-circuits			
	arch-SVST	arch-SVDT		arch-SVST	arch-SVDT
🔶 🐴 🔶	no gen eous	fa br i&at logi	c blockiles	esinghth r	nuchal Vt)
reduce	power (watt)	power saving		power (watt)	power saving
1 eque	cu igagaagi	e hosser	bigkey	0.148	12.3%
Traditio	onal ¹⁰ desi	gn flow in V	PR diffed	be ₀ .32 30 30 10 10 10 10 10 10 10 10 10 10 10 10 10	$ed_{19.7\%}^{14.8\%}$
des	0.234	10.7%	dsip	0.134	14.5%
ex1010	0.179	17.3%	elliptic	0.140	16.3%
ex5p	0.059	11.6%	frisc	0.190	19.2%
misex3	0.0753	9.4%	s298	0.0736	13.4%
pdc	0.256	14.7%	s38417	0.307	11.7%
seq	0.0927	9.4%	s38484	0.261	10.2%
spla	0.180	12.4%	tseng	0.0351	14.0%
Ανσ		11.6%	Avg.		14.6%

	lental Kes	sults	
Vmap (Single hig	gh Vdd) compared	to Emap [Lamoureu	x, ICCAD03]
Mapping area	Total edges	Est'ed power	Real power
- 4.04%	0.56%	- 1.29%	- 2.10%
Mapping area c	onsiderably better		
Mapping area c Estimated powe DVmap (dual Vd SVmap	eonsiderably better or very close to the d) compared to SV	veral power reporte	d after P&R
Mapping area c Estimated powe DVmap (dual Vd SVmap v1.3	considerably better er very close to the d) compared to SV	e real power reporte 7map DVmap v1.3 - v0.9	v1.3 - v1.0

ual Vdd Clu	istering compar	red to Single Vdo	d Clustering
Single Vdd		Dual Vdd	
v1.3	v1.3 - v0.8	v1.3 - v0.9	v1.3 - v1.0
	31.90/	- 20.8%	10.6%

