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FPGA Advantages

Short TAT  (total turnaround time)
No or very low NRE

ASICs Increasingly Expensive
Traditional ASIC designs are facing rapid increase 
of NRE and mask-set costs at 90nm and below

Source: EETimes
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But … FPGA is Known to be Power Inefficient

FPGA consumes 50-100X more power
Need to explore power efficient FPGAs

Source:
[Zuchowski, et al, ICCAD02]
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BC-Netlist

BC-Netlist
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Power 
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Power

BLIF
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Timing-Driven Packing (TV-Pack)
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SLIF

DelayArea

fpgaEva flow [Cong, et al, ICCD’00]
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fpgaEva-LP [Li, et al, FPGA’03]
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Mixed-level Power Model – Overview

Dynamic power
Switching power 
Short-circuit power

Related to signal 
transitions

Functional switch
Glitch
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model
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Logic Block
components
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Static Power
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Depending on the input 
vector
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Logic Block 
Power
19%

Interconnect 
Power
59%

Clock Power
22%

Power Breakdown

Interconnect power is dominant

Cluster Size = 12, LUT Size = 4

Clock Power
15%

Interconnect 
Power
45%

Logic Block 
Power
40%

Cluster Size = 12, LUT Size = 6

Power Breakdown (cont’d)

Leakage 
Power
42%

Dynamic 
Power
58%

Dynamic 
Power
48%

Leakage 
Power
52%

Leakage power becomes increasingly important

Cluster Size = 12, LUT Size = 4 Cluster Size = 12, LUT Size = 6
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Total Power along LUT and Cluster Size 
Changes
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Routing architecture: segmented wire with length of 4, and 50% tri-state 
buffers in routing switches
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Routing Architecture Evaluation

Architecture of Low-power and 
High-performance

0.78651.02680.88651.0502

Cluster size 12,
LUT size 4,

Wire segment length 4,
100% buffered routing 

switches

High-
performance 

(Et3)

1.00800.89090.99040.9653

Cluster size 10, 
LUT size 4, 

wire segment length 4,
25% buffered routing switches 

Low-power
(E3t)

Et3E3tDelay 
(t)

Energy 
(E)

Best FPGA architectureApplications

Arch. Parameter selection leads to 10% power/delay trade-off
Uniform FPGA fabrics provide limited power-performance tradeoff
Need to explore heterogeneous FPGA fabrics, e.g. dual-Vt and dual-
Vdd fabrics
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Dual-Vdd LUT Design
Dual-Vdd technique makes use of the timing slack 
to reduce power

VddH devices on critical path        performance
VddL devices on non-critical paths      power
Assume uniform Vdd for one LUT

Threshold voltage Vt should be adjusted carefully
for different Vdd levels

To compensate delay increase
To avoid excessive leakage power increase
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Vdd/Vt-Scaling for LUTs
Three scaling schemes

Constant-Vt scaling
Fixed-Vdd/Vt-ratio scaling
Constant-leakage scaling
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Constant-leakage scaling obtains 
a good tradeoff
useful for both single-Vdd
scaling and dual-Vdd design

Dual-Vt LUT Design
LUT is divided into two parts

Part I: configuration cells          high Vt
Part II: MUX tree and input buffers         normal Vt (decided by 
constant-leakage Vdd-scaling)

Configuration SRAM cells
Content remains unchanged after 
configuration
Read/write delay is not related to 
FPGA performance

Use high Vt ~40% of Vdd
Maintain signal integrity
Reduce SRAM leakage by 15X
and LUT leakage by 2.4X
Increase configuration time by 
13%
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Pre-Defined Dual-Vt Fabric

FPGA fabric arch-SVDT
Dual-Vt inside a LUT
A homogeneous fabric at logic block level with much 
reduced leakage power

Traditional design flow in VPR can be applied

Power saving
11.6% for combinational circuits
14.6% for sequential circuits

12.4%0.180spla
9.4%0.0927seq

power savingpower (watt)

11.6%Avg.

14.7%0.256pdc
9.4%0.0753misex3
11.6%0.059ex5p
17.3%0.179ex1010
10.7%0.234des
12.3%0.0536apex4
9.3%0.108apex2
8.5%0.0798alu4

arch-SVDT 
(Dual Vt)

arch-SVST 
(Single Vt)Circuit

Table1  Combinational circuits

14.0%0.0351tseng
10.2%0.261s38484

power savingpower (watt)

14.6%Avg.

11.7%0.307s38417
13.4%0.0736s298
19.2%0.190frisc
16.3%0.140elliptic
14.5%0.134dsip
19.7%0.0391diffeq
14.8%0.632clma
12.3%0.148bigkey

arch-SVDT 
(Dual Vt)

arch-SVST
(Single Vt)circuit

Table2  Sequential circuits

Dual-Vdd FPGA Fabric
Granularity: logic block (i.e., cluster of LUTs)

Smaller granularity => intuitively more power saving
But a larger implementation overhead

Layout pattern: pre-defined dual-Vdd pattern
Row-based or interleaved pattern
Ratio of VddL/VddH blocks is 2:1 (benchmark profiling)

Interconnect uses uniform VddH

L-block: 
VddL

H-block: 
VddH
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Simple Design Flow for Dual-Vdd Fabric
Based on traditional design flow, but with 
new steps

Step I: LUT mapping (FlowMap) + P & R
assuming uniform  VddH (using VPR)

Step II: Dual-Vdd assignment based on sensitivity

Setp III: Timing driven P & R considering pre-
defined dual-Vdd pattern (modified VPR)

Comparison Between Vdd-Scaling 
and Dual-Vdd

For high clock frequency, dual Vdd achieves ~6% total power saving 
(~18% logic power saving)
For low clock frequency, single-Vdd scaling is better
Still a large gap between ideal dual-Vdd and real case

Ideal dual-Vdd is the result without layout pattern constraint

circuit: alu4
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Vdd-Programmable Logic Block
Power switches for Vdd selection and power gating
One-bit control is needed for Vdd selection, but two-bit 
control power gating

Experimental Results with Vdd-
Programmable Blocks

Power v.s. performance
Circuit: alu4
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Low Power Synthesis for Dual Vdd FPGAs

FPGA architecture with dual-Vdds adds 
new layout constraints for synthesis tools
Novel synthesis tools are required to 
support the architecture

Technology mapping [Chen, et al, FPGA’04]
Circuit clustering [Chen, et al, ISLPED’04]



16

Technology Mapping for Low-Power 
FPGAs with Dual Vdds
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Cut Enumeration:

Topological Order 
from PIs to POs.

Delay 1, Power 1

Delay 2, Power 2

Delay 1, Power 1.5

Optimal 
Delay = 1

Power =  1.5

Optimal 
Delay = 2

Power =  2.5

Delay 1, Power 1

Delay 2, Power 3.2

Delay 2, Power 3.5

Delay 2, Power 3.5

Delay 2, Power 2.5

Optimal 
Delay = 1

Power =  1

Optimal 
Delay = 1

Power =  1

Represent 1 case: single high Vdd case

Dual-Vdd Cases

Consider:
Converter delay & power
VddL LUT delay & power
VddH LUT delay & power

a c
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e
Target
LUT

Cases Inp ut LUT Target LUT Converter
1 VddL VddL No
2 VddL VddH Yes
3 VddH VddL No
4 VddH VddH No

Input 
LUT

Four extra cases for dual-Vdd
consideration

Produce these four cases for each cut and node
More tradeoff solution points 
Smaller power requires larger delay
Smaller delay requires larger power
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Low Vdd LUTHigh Vdd LUT

Mapping Solution Generation

From POs to PIs
Critical path 
driven by VddH
LUT
Non-critical paths 
can be driven by 
VddL LUT, 
guided by low 
power
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Two Types of Required Times

VddL VddH

33.2

R

x y

If R is using VddH: 

converter

Req’d times

Mapped LUTs

1.7 = 2.0 - 0.3

Critical path

If R is using VddL: 

Critical path

1.8 2.0 Req’d times 
propagated back

Req’d time of R is 1.7

Req’d time of R is 1.8

To be 
mapped

Each node maintains two 
req’d times:

Propagated separately

Interact with each other
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Experimental Results

- 2.10%- 1.29%0.56%- 4.04%

Real powerEst'ed powerTotal edgesMapping area

SVmap (Single high Vdd) compared to Emap [Lamoureux, ICCAD03]

Mapping area considerably better
Estimated power very close to the real power reported after P&R

- 9.44%- 10.72%- 11.63%
v1.3 - v1.0v1.3 - v0.9v1.3 - v0.8v1.3

DVmapSVmap

DVmap (dual Vdd) compared to SVmap

v1.3 as VddH and v0.8 as VddL is the best combination

Circuit Clustering for Low-Power 
FPGAs with Dual Vdds
Given:

Cluster Input ≤ K
Cluster Size ≤ M
Cluster Output ≤ M
LUT delay = d
Edge delay = D

Goal:
Optimal delay 
Minimum power

Example:
Input = 5
Size = 3
Output = 2
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Cluster Enumeration

m n o p q

r s

t
Example

To get a cluster of size 6 on LUT t

Get 1 node on r, 4 on s, then 
merge with t …., and

Get 2 nodes on r, 3 on s …Handles common nodes 

Handles non-monotone property on the input constraint

Common nodes
PIs to POs

Dynamic 
Programming

Get 3 on r …

Solution Propagation – An Example

m n o p q

r s

t

Cluster C1 Cluster C2

Delay and power (form solution points) propagate through 
the clusters and nodes iteratively (similar to dual-Vdd mapping)

All the good solutions are kept [Vaishnav, ICCAD’99]

Try to get 
solutions of 
Cluster C3
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Solution Curve of C1
Good solutions: Any two delay-power points (D1, P1) and (D2, P2)

if D1 > D2, then P1 < P2
if D1 < D2, then P1 > P2 
Each delay-power point has a Vdd setting 
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Consider:
Converter 
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All the good       
solutions are 
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Clustering Solution Generation

Clustering solution generation follows the similar 
way as that in Dual-Vdd mapping procedure
The amortized complexity of solution curve 
generation is quadratic on the order of the 
network depth
Non-critical paths will be relaxed to accommodate 
low-Vdd clusters 
This algorithm is delay and power optimal for 
trees and delay optimal for directed acyclic graphs 
(DAGs) with dual-Vdd FPGAs

Experimental Results

- 19.6%- 20.8%- 21.8%
v1.3 - v1.0v1.3 - v0.9v1.3 - v0.8v1.3

Dual VddSingle Vdd

Dual Vdd Clustering compared to Single Vdd Clustering

v1.3 as VddH and v0.8 as VddL is the best combination
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Conclusions
FPGA power consumption 

Majority on programmable interconnects
Leakage is significant

FPGA architecture optimization for power
Architecture parameter tuning has a limited impact
Using high Vt for configuration SRAM cells is helpful
Using programmable dual Vdd for logic blocks is helpful

Power-efficient FPGA architectures introduce 
interesting CAD problems

Dual-Vdd mapping
Dual-Vdd clustering

Up to 20% power saving reported using these algorithms


