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Abstract 
This paper describes the challenges facing IC 
implementation today, and concludes that a multi-vendor 
EDA system is a necessity in today’s complex design 
environment.  We introduce the concept of Chip-Level 
Design Automation (CLDA), the next level of abstraction 
in physical design, which relies to a much greater degree 
on automation in order to leave the designer free to 
consider higher-level design issues and gives the 
designer more time to explore the full implementation 
design space.  Arguments are made that claim CLDA can 
provide a 10X productivity improvement, and actual 
measurements using the ReShape software system 
validate the claims, and show CLDA to be a new level of 
abstraction worthy of attention. 
Introduction 
The “design productivity gap” is defined as the gulf 
between what is possible to manufacture and what is 
possible to design by the ITRS [ITRS99].  Ron Collett, of 
Numetrics Corporation, documented the rising SoC 
design productivity gap at the Electronic Design 
Processes Workshop in 2001 [Collet01].   In 2003, 
International Business Strategies, Inc. [IBS03] showed 
that while costs were increasing, physical design 
productivity has been decreasing since the 0.35-micron 
technology (See Figure 1). 

Many factors contribute to this effect.  Exponential 
growth in transistor complexity is compounded with 
growing interconnect parameter complexity and 
increasing operating frequencies for designs.  What were 
previously interconnect parasitics are now primary 
effects.  Clock frequencies are already in the multi-GHz 
range for CPUs and network chips, and are approaching 
the GHz range in graphics and other high-end chips.  
Designers must augment their work flow with 
implementation and verification steps to fully manage 
these effects.   Yet, fundamental implementation steps are 

still dependent on 20-year-old design automation 
technology.  

Cell-based place and route (P&R) has supported a 1,000x 
complexity growth since the mid-1980s.  While the EDA 
industry has invested heavily to maintain the 
effectiveness of cell-level P&R it is falling behind in its 
ability to keep up with the design challenges.  
Product price/performance ratios exert incredible 
pressure on Quality of Results (QoR).  Viability can be 
gained or lost in slim margins even before technology 
pressures are considered.  Mobile computing challenges 
power consumption in designs, complexity places 
demands on manufacturability and design cycle, and 
short product life-cycles pressure time-to-market and 
reduced NRE costs, which aim straight toward 
engineering productivity. 
Use of hierarchy is no longer a convenience, but a 
necessity. Eighty percent of today’s hierarchical design 
effort is focused on block specification (pins, repeaters, 
constraints), running the tools, and integration 
verification.  Only twenty percent of the effort is spent on 
full-chip global decisions like chip area, global 
interconnect, power, and clocking.  Making these 
decisions without knowing how the implementation will 

affect the design results in ineffective iteration. Because 
hierarchy cannot be properly managed, most designs are 
locked into a frozen set of blocks far too early in the 
design process.  
Chip-Level Design Automation (CLDA) is aimed at 
enabling SoC design teams to focus on higher levels of 
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Figure 1 Chip design cost vs. Design productivity trend 

Figure 2 Systems where most time is spent in blocks 



 

 

implementation while increasing the “communication” 
with automated block-implementation tasks. 
 
Challenges in IC Physical Implementation 
Flow not an integrated part of the design data 
Logic designers capture their design intent by writing 
RTL and specifying design constraints.  They use 
synthesis technology to bind function (specified by the 
RTL), performance (design constraints) with a cell-
library (e.g. Artisan, LSI Logic, etc.) 
By contrast, physical designers express their design intent 
through a floorplan and a series of tool sequences and 
tool commands.  These are captured in tool command 
files, UNIX scripts, and make files that often total 
hundreds of thousands of lines for complex chips.  They 
are typically written as one-off design-dependent 
programs hardwiring aspects of the netlist, floorplan, IP, 
the versions of the tools being used, and the tool settings.    
There are three problems with the scripted design 
approach.  First, managing and maintaining script code 
complexity is labor intensive.  It is a fact of life in 
physical design that netlist, floorplan, IP, tool versions, 
and tool settings change nearly to the minute the “tape” 
ships to the mask shop, and change breaks the hard-coded 
scripts.   
Second, these “scripted specifications” are generally 
incomplete and require significant manual intervention to 
produce mask-ready layout. For example, some or all of 
these issues require manual oversight: 

•  Manual data preparation  
•  Monitoring script progress  
•  Recovery from scripting errors and tool failures  
•  Machine and license resource management  
•  Determining next step after a script completes  
•  Script maintenance 
•  Design-specific optimizations 

Finally, because the team objectives are hardware, rather 
than tool related, time pressures make it impractical to 
generalize the scripts as reusable tools.  This is analogous 
to front end design where writing reusable RTL requires 
twice the effort of implementing the original function.  
Compounded by the fact that physical design teams are 
always asked to make up for the delays that were incurred 
upstream, this negates any hope of script reuse across 
design organizations, and sometimes even between 
designs.  
Single Vendor Solutions Insufficient 
It is tempting to consider a single-vendor solution to 
these flow issues.  Most single-vendor solutions are well 
integrated, and some today are quite comprehensive.  
Irrespective of any vendor’s propensity to accrete 
technology through merger or acquisition the fact 
remains that no single vendor is the best at everything.  In 
addition, EDA technology leadership is transitory as 

competitors leapfrog the older systems and evolving 
process nodes drive new technical solutions. 
We posit that given any design flow, every single-vendor 
solution to that flow is missing perceived vital 
construction or verification technology.  In addition, the 
best-integrated single-vendor solutions will be the hardest 
to extend in “non-standard” ways by design.  While an 
end-user company with a large central CAD group may 
bear the overhead to extend such systems, it is almost 
impossible for a circuit design group to accomplish this 
without paid consulting help.  Even in the cases where 
the single-vendor provides consulting help, extension can 
be problematic if the extension involves a 3rd-party tool 
from a competing vendor. 
As mentioned before, a successful flow’s relevance may 
still be transient in nature.  It is likely that such a flow 
will work for a given design, but it is also likely that it 
will require modification from one design to the next, and 
it is almost a certainty that it will require modification 
from one process node to the next.  The chance of having 
all the right tools available for these cases from a single 
vendor is extremely low. 
The larger EDA companies which have grown through 
acquisition have problems providing an ultimately unified 
solution with acquired technology.  There are instances 
where 3rd-party companies are able to more fully 
integrate two EDA tools that belong to the same large 
company, but most often the job of integration is left to 
the end-user group or to their central CAD department.  
This is the source of the oft-quoted customer lament that 
$3-5 is spent on integration for every $1 spent on EDA 
tool purchases. 
Challenge is to manage uncertainty 
Add to these challenges that the blocks in the design may 
be finished at different rates.  Complex EDA tools may 
display stochastic behavior, affecting the overall 
convergence of the design.  An overabundance of 
logistical issues is present in getting different tools to 
interoperate. Interaction between blocks and between the 
blocks and top-level chip attributes must be considered 
while the design progresses. Finally, the design work may 
be spread out over groups in geographically disparate 
locations. The challenge in IC design is to obtain the 
adequate process observability and controllability to 
manage uncertainty and drive productivity. 
 
Chip-Level Design Automation 
The Next 10X in Productivity 
Chip-level Design Automation is the next level of design 
abstraction for physical designers.  With CLDA, the 
designers’ attention rises to optimizing whole-chip issues 
from the very start of the design cycle.  Designers make 
decisions in the context of the full chip, and get 
verification feedback from mask-ready layout to those 
decisions in unprecedented turnaround times.   



 

 

Making Hierarchy Work 
The issues involved in handling hierarchical design and 
the inadequacy of hierarchical design tools has been a 
barrier to most teams attempting to use this design style. 
One key to making it work is total automation of the chip 
construction process. If the full-chip layout can be 
iterated quickly, chip-level issues surface quickly.  
This level of automation is powered by combining three 
flow-process techniques:  1) a replayable design 
specification, 2) splitting the flow into modular, plug and 
play construction steps, and 3) flow elaboration (i.e. 
creating customized scripts for the specific chip) at 
runtime.   

1) CLDA assumes the physical designer 
implements the SoC function defined by the 
RTL designers, within timing and cost (area) 
constraints in an environment of constant 
change.  A resilient physical design specification 
is needed to make change management easy.  
With CLDA a SoC can be reconstructed without 
designers having to get into the details of 
individual cell, macro or pre-route placements, 
or how the netlist interacts with the design 
specification.   

2) To fully automate the design flow, the flow is 
broken up into units of physical design work, 
called stages.  Stages are high-level construction 
steps such as place, global route, and clock tree 

synthesis.  By connecting stages together, 
designers can customize a block construction 
recipe in a systematic way (tool settings, for 
example.) Stages have error checking and 
recovery to stop construction if errors occur, and 
recover from the basic failure modes.   

3) Flow elaboration at runtime generates custom 
tool scripts for each block in context of the 
design.  The elaboration process takes the 
physical design intent as specified by the 
floorplan, tool sequence (specified from a 
library of flow stages as described above), and 
tool settings specified for each block in the 
design—combined with the logic designers 
intent (netlist and constraints)—to generate the 
hundreds of thousands of lines of customized 
scripts for the specific design.  The elaboration 
process allows user input to be largely 
abstracted from the details of specific tools and 
netlists, even though the resulting tool command 
files and scripts are specific to them.  Physical 
design teams enjoy a 100X reduction in the 
volume of script coding they must manage. 

 
CLDA provides teams with full visibility into the status 
of flow completion coupled with data-mining to provide a 
complete snap-shot of overall design status at any point 
in time.  This allows design management to clearly 
pinpoint progress, to apportion resources, and to identify 
roadblocks in chip implementation.  
Because the chip is implemented quickly, CLDA 
optimizations improve quality of results for chip area, 
performance, and power consumption.  Place and route 
algorithms are non-deterministic and exhibit stochastic 
behavior. As a consequence design teams today invest a 
tremendous amount of effort in determining optimal pin 
locations on blocks, placement of global 
repeaters/buffers, and propagation of Synopsys design 
constraints (SDCs) onto the individual blocks.  CLDA 
automatic optimizations abstract away the low-level 
details of individual block specification for place and 
route. 
CLDA QoR 
For CLDA to be accepted there can be no degradation in 
QoR over existing design methods.  CLDA technology 
improves chip quality in three ways: 

1. Fast design iterations enable engineers to 
explore and verify many more design 
options using the production place and route 
and verification tools so there is no 
miscorrelation of estimation models, 
because the behavior of the P&R tools is 
used directly to drive design decisions. 

2. Abutted block hierarchical design style 
enables high-performance, high-volume 
microprocessor and graphic processor 
designs, and has been found to decrease die 
sizes by 10 to 20% over conventional 
channeled routing schemes. Professor Cong 
at UCLA reports that breaking designs into 
smaller blocks (250K instances, or about 
one million gates) delivers higher quality 

Figure 3 CLDA lets designers spend most time on global issues 



 

 

than large flat place and route techniques 
[Cong01]. 

3. Design Aware™ technology when 
combined with abutted methodology yields 
a quality of results identical to flat design.  
The user pays no penalty for hierarchical 
partitioning. The Design Aware algorithm 
uses the results of prior chip layout 
decisions to drive new layout iterations just 
as a designer does by hand. ReShape CLDA 

uses Design Aware optimization for pin 
placement and global signal repeater 
insertion, resulting in global wire length 
reductions of 30 to 40 percent, with a 
corresponding improvement in the timing 
and power consumption of these signals 
(see Figure 5). A mixture of Design-Aware 
and estimated information may be used, so 
convergence can still be achieved even in 
the event blocks are finished at different 
points in time.   

 
PD Planner 
This is the front end of the ReShape design system.  It is 
the floorplanning system in which a user creates a 
replayable floorplan script.  In the figure below is 
displayed a chip floorplan including the detail of the 

pads, the top-level (soft) blocks, macro cells within the 
top-level blocks, and repeaters that have been introduced 
to buffer top-level nets.  The original gate-level netlist 
has been repartitioned.  Not visible but present are power 
rings and meshes for the chip, and the logical 
implementation for the clock tree.  In addition to the 
ability to create replayable floorplans, PD Planner 
includes basic floorplanning capabilities such as pad 
placement, grouping and repartitioning, power planning 
and analysis, clock-tree synthesis, timing budgeting, top-
block and macro-block placement, and global signal 
repeatering. 
PD Planner helps the user concentrate on the high-level 
aspects of design, leaving the construction of the blocks 
to the 3rd-party tools driven with PD Builder (described 
below).  PD Planner uses an abutted methodology 
enabled by powerful optimization technologies and 
provides Virtual Flat results. 
PD Builder 
PD Builder is the back end of the ReShape design 
system.  It is the control system that drives 
implementation of the blocks through the 3rd-party tools.  
In the picture shown below, you can see the spreadsheet-
style interface.  The rows represent stages of the flow, 
and each column represents a block in the design.  The 
flows are customizable in many ways.  The simplest way 

the flow can be changed is to choose a default flow for 
the chip.  Currently, timed and untimed variations are 
available for Synopsys- and Cadence-based tool flows.   
OpenFlows 
Once a flow is chosen, each step or stage within the flow 
can be parameterized through changing predefined vars 
that control the execution of a given stage.  It is possible 
to set a different subflow for each block.  For example, in 
the figure above, block m0 could be using a Cadence 
flow and block m1 could be using a Synopsys flow.  This 

Figure 4 PD Builder window building chip automatically 
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Figure 5 PD Planner window with Replayable Floorplan 



 

 

allows for a form of “what if” exploration to minimize 
each block. 
In addition to customizing each block with its own flow, 
it is possible to customize the flows with user-written 
stages that can add other 3rd-party or proprietary tools to 
the flows driven through PD Builder. 
Results 
Three important scenarios are used to measure physical 
design productivity: 
The number of lines of code it takes to describe an SoC 
The time to assemble the initial full-chip implementation 
The time to assemble a revised, incremental floorplan and 
netlist 
First, most physical design team create 100’s of 
thousands lines of script code to codify the construction 
of a SoC.  Because CLDA abstracts away the binding of 
physical design intent from the netlist, technology, tools, 
there is typically a 100X reduction in scripts required to 
specify a SoC in a CLDA system vs. a cell-based 
system—a productivity improvement of at least 10X.   
Second, a team of eight designers takes six to nine weeks 
to assemble and perform the initial build of a hierarchical 
SoC with eight to 12 place and route blocks and one 

million placeable instances. (This is a big reason why 
full-chip analysis is often deferred to late in the design 
cycle.) Comparable designs using ReShape tools take two 
engineers just two weeks.  The productivity gain for a 
first build is at least 10X. 
Third, and perhaps most important, is the time it takes to 
support a design engineering change order, ECO. This is 
the critical metric, because it enables efficient design 
exploration in the early part of the design stage, and 

accommodates the inevitable last-minute design changes 
imposed by (1) the system verification uncovering bugs, 
(2) the customer, or (3) the market.  Using ReShape’s 
CLDA tools, one engineer can build a completely new 
design from a new floorplan and netlist in 24 hours.  A 
traditional tool methodology will take the eight-person 
team from five to 14 days, depending on the extent of the 
changes.  The incremental productivity boost is at least 
40X.   It is this productivity boost that makes full-chip 
physical design exploration, and dealing effectively with 
late breaking ECOs practical.  The bottom line is higher 
quality chips on schedule.  See Figures 7 and 8. 
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