

Unifying Multiple Tools to Achieve High Performance SoC Design

Mark Bales, Joe Mastroianni, David Gregory, Paul Rodman

ReShape, Inc., Mountain View, CA, USA

Abstract
This paper describes the challenges facing IC
implementation today, and concludes that a multi-vendor
EDA system is a necessity in today’s complex design
environment. We introduce the concept of Chip-Level
Design Automation (CLDA), the next level of abstraction
in physical design, which relies to a much greater degree
on automation in order to leave the designer free to
consider higher-level design issues and gives the
designer more time to explore the full implementation
design space. Arguments are made that claim CLDA can
provide a 10X productivity improvement, and actual
measurements using the ReShape software system
validate the claims, and show CLDA to be a new level of
abstraction worthy of attention.
Introduction
The “design productivity gap” is defined as the gulf
between what is possible to manufacture and what is
possible to design by the ITRS [ITRS99]. Ron Collett, of
Numetrics Corporation, documented the rising SoC
design productivity gap at the Electronic Design
Processes Workshop in 2001 [Collet01]. In 2003,
International Business Strategies, Inc. [IBS03] showed
that while costs were increasing, physical design
productivity has been decreasing since the 0.35-micron
technology (See Figure 1).

Many factors contribute to this effect. Exponential
growth in transistor complexity is compounded with
growing interconnect parameter complexity and
increasing operating frequencies for designs. What were
previously interconnect parasitics are now primary
effects. Clock frequencies are already in the multi-GHz
range for CPUs and network chips, and are approaching
the GHz range in graphics and other high-end chips.
Designers must augment their work flow with
implementation and verification steps to fully manage
these effects. Yet, fundamental implementation steps are

still dependent on 20-year-old design automation
technology.

Cell-based place and route (P&R) has supported a 1,000x
complexity growth since the mid-1980s. While the EDA
industry has invested heavily to maintain the
effectiveness of cell-level P&R it is falling behind in its
ability to keep up with the design challenges.
Product price/performance ratios exert incredible
pressure on Quality of Results (QoR). Viability can be
gained or lost in slim margins even before technology
pressures are considered. Mobile computing challenges
power consumption in designs, complexity places
demands on manufacturability and design cycle, and
short product life-cycles pressure time-to-market and
reduced NRE costs, which aim straight toward
engineering productivity.
Use of hierarchy is no longer a convenience, but a
necessity. Eighty percent of today’s hierarchical design
effort is focused on block specification (pins, repeaters,
constraints), running the tools, and integration
verification. Only twenty percent of the effort is spent on
full-chip global decisions like chip area, global
interconnect, power, and clocking. Making these
decisions without knowing how the implementation will

affect the design results in ineffective iteration. Because
hierarchy cannot be properly managed, most designs are
locked into a frozen set of blocks far too early in the
design process.
Chip-Level Design Automation (CLDA) is aimed at
enabling SoC design teams to focus on higher levels of

1000

1500

2000

2500

3000

3500

350nM 250nM 180nM 130nM 90nM

Tr
an

si
st

or
s

Pe
r H

ou
r

C
os

t P
er

 D
es

ig
n

$1M

$2M

$3M

$4M

$5M

$1M

$2M

$3M

$4M

$5M

Source: International Business Strategies, Inc., 2003

Figure 1 Chip design cost vs. Design productivity trend

Figure 2 Systems where most time is spent in blocks

implementation while increasing the “communication”
with automated block-implementation tasks.

Challenges in IC Physical Implementation
Flow not an integrated part of the design data
Logic designers capture their design intent by writing
RTL and specifying design constraints. They use
synthesis technology to bind function (specified by the
RTL), performance (design constraints) with a cell-
library (e.g. Artisan, LSI Logic, etc.)
By contrast, physical designers express their design intent
through a floorplan and a series of tool sequences and
tool commands. These are captured in tool command
files, UNIX scripts, and make files that often total
hundreds of thousands of lines for complex chips. They
are typically written as one-off design-dependent
programs hardwiring aspects of the netlist, floorplan, IP,
the versions of the tools being used, and the tool settings.
There are three problems with the scripted design
approach. First, managing and maintaining script code
complexity is labor intensive. It is a fact of life in
physical design that netlist, floorplan, IP, tool versions,
and tool settings change nearly to the minute the “tape”
ships to the mask shop, and change breaks the hard-coded
scripts.
Second, these “scripted specifications” are generally
incomplete and require significant manual intervention to
produce mask-ready layout. For example, some or all of
these issues require manual oversight:

• Manual data preparation
• Monitoring script progress
• Recovery from scripting errors and tool failures
• Machine and license resource management
• Determining next step after a script completes
• Script maintenance
• Design-specific optimizations

Finally, because the team objectives are hardware, rather
than tool related, time pressures make it impractical to
generalize the scripts as reusable tools. This is analogous
to front end design where writing reusable RTL requires
twice the effort of implementing the original function.
Compounded by the fact that physical design teams are
always asked to make up for the delays that were incurred
upstream, this negates any hope of script reuse across
design organizations, and sometimes even between
designs.
Single Vendor Solutions Insufficient
It is tempting to consider a single-vendor solution to
these flow issues. Most single-vendor solutions are well
integrated, and some today are quite comprehensive.
Irrespective of any vendor’s propensity to accrete
technology through merger or acquisition the fact
remains that no single vendor is the best at everything. In
addition, EDA technology leadership is transitory as

competitors leapfrog the older systems and evolving
process nodes drive new technical solutions.
We posit that given any design flow, every single-vendor
solution to that flow is missing perceived vital
construction or verification technology. In addition, the
best-integrated single-vendor solutions will be the hardest
to extend in “non-standard” ways by design. While an
end-user company with a large central CAD group may
bear the overhead to extend such systems, it is almost
impossible for a circuit design group to accomplish this
without paid consulting help. Even in the cases where
the single-vendor provides consulting help, extension can
be problematic if the extension involves a 3rd-party tool
from a competing vendor.
As mentioned before, a successful flow’s relevance may
still be transient in nature. It is likely that such a flow
will work for a given design, but it is also likely that it
will require modification from one design to the next, and
it is almost a certainty that it will require modification
from one process node to the next. The chance of having
all the right tools available for these cases from a single
vendor is extremely low.
The larger EDA companies which have grown through
acquisition have problems providing an ultimately unified
solution with acquired technology. There are instances
where 3rd-party companies are able to more fully
integrate two EDA tools that belong to the same large
company, but most often the job of integration is left to
the end-user group or to their central CAD department.
This is the source of the oft-quoted customer lament that
$3-5 is spent on integration for every $1 spent on EDA
tool purchases.
Challenge is to manage uncertainty
Add to these challenges that the blocks in the design may
be finished at different rates. Complex EDA tools may
display stochastic behavior, affecting the overall
convergence of the design. An overabundance of
logistical issues is present in getting different tools to
interoperate. Interaction between blocks and between the
blocks and top-level chip attributes must be considered
while the design progresses. Finally, the design work may
be spread out over groups in geographically disparate
locations. The challenge in IC design is to obtain the
adequate process observability and controllability to
manage uncertainty and drive productivity.

Chip-Level Design Automation
The Next 10X in Productivity
Chip-level Design Automation is the next level of design
abstraction for physical designers. With CLDA, the
designers’ attention rises to optimizing whole-chip issues
from the very start of the design cycle. Designers make
decisions in the context of the full chip, and get
verification feedback from mask-ready layout to those
decisions in unprecedented turnaround times.

Making Hierarchy Work
The issues involved in handling hierarchical design and
the inadequacy of hierarchical design tools has been a
barrier to most teams attempting to use this design style.
One key to making it work is total automation of the chip
construction process. If the full-chip layout can be
iterated quickly, chip-level issues surface quickly.
This level of automation is powered by combining three
flow-process techniques: 1) a replayable design
specification, 2) splitting the flow into modular, plug and
play construction steps, and 3) flow elaboration (i.e.
creating customized scripts for the specific chip) at
runtime.

1) CLDA assumes the physical designer
implements the SoC function defined by the
RTL designers, within timing and cost (area)
constraints in an environment of constant
change. A resilient physical design specification
is needed to make change management easy.
With CLDA a SoC can be reconstructed without
designers having to get into the details of
individual cell, macro or pre-route placements,
or how the netlist interacts with the design
specification.

2) To fully automate the design flow, the flow is
broken up into units of physical design work,
called stages. Stages are high-level construction
steps such as place, global route, and clock tree

synthesis. By connecting stages together,
designers can customize a block construction
recipe in a systematic way (tool settings, for
example.) Stages have error checking and
recovery to stop construction if errors occur, and
recover from the basic failure modes.

3) Flow elaboration at runtime generates custom
tool scripts for each block in context of the
design. The elaboration process takes the
physical design intent as specified by the
floorplan, tool sequence (specified from a
library of flow stages as described above), and
tool settings specified for each block in the
design—combined with the logic designers
intent (netlist and constraints)—to generate the
hundreds of thousands of lines of customized
scripts for the specific design. The elaboration
process allows user input to be largely
abstracted from the details of specific tools and
netlists, even though the resulting tool command
files and scripts are specific to them. Physical
design teams enjoy a 100X reduction in the
volume of script coding they must manage.

CLDA provides teams with full visibility into the status
of flow completion coupled with data-mining to provide a
complete snap-shot of overall design status at any point
in time. This allows design management to clearly
pinpoint progress, to apportion resources, and to identify
roadblocks in chip implementation.
Because the chip is implemented quickly, CLDA
optimizations improve quality of results for chip area,
performance, and power consumption. Place and route
algorithms are non-deterministic and exhibit stochastic
behavior. As a consequence design teams today invest a
tremendous amount of effort in determining optimal pin
locations on blocks, placement of global
repeaters/buffers, and propagation of Synopsys design
constraints (SDCs) onto the individual blocks. CLDA
automatic optimizations abstract away the low-level
details of individual block specification for place and
route.
CLDA QoR
For CLDA to be accepted there can be no degradation in
QoR over existing design methods. CLDA technology
improves chip quality in three ways:

1. Fast design iterations enable engineers to
explore and verify many more design
options using the production place and route
and verification tools so there is no
miscorrelation of estimation models,
because the behavior of the P&R tools is
used directly to drive design decisions.

2. Abutted block hierarchical design style
enables high-performance, high-volume
microprocessor and graphic processor
designs, and has been found to decrease die
sizes by 10 to 20% over conventional
channeled routing schemes. Professor Cong
at UCLA reports that breaking designs into
smaller blocks (250K instances, or about
one million gates) delivers higher quality

Figure 3 CLDA lets designers spend most time on global issues

than large flat place and route techniques
[Cong01].

3. Design Aware™ technology when
combined with abutted methodology yields
a quality of results identical to flat design.
The user pays no penalty for hierarchical
partitioning. The Design Aware algorithm
uses the results of prior chip layout
decisions to drive new layout iterations just
as a designer does by hand. ReShape CLDA

uses Design Aware optimization for pin
placement and global signal repeater
insertion, resulting in global wire length
reductions of 30 to 40 percent, with a
corresponding improvement in the timing
and power consumption of these signals
(see Figure 5). A mixture of Design-Aware
and estimated information may be used, so
convergence can still be achieved even in
the event blocks are finished at different
points in time.

PD Planner
This is the front end of the ReShape design system. It is
the floorplanning system in which a user creates a
replayable floorplan script. In the figure below is
displayed a chip floorplan including the detail of the

pads, the top-level (soft) blocks, macro cells within the
top-level blocks, and repeaters that have been introduced
to buffer top-level nets. The original gate-level netlist
has been repartitioned. Not visible but present are power
rings and meshes for the chip, and the logical
implementation for the clock tree. In addition to the
ability to create replayable floorplans, PD Planner
includes basic floorplanning capabilities such as pad
placement, grouping and repartitioning, power planning
and analysis, clock-tree synthesis, timing budgeting, top-
block and macro-block placement, and global signal
repeatering.
PD Planner helps the user concentrate on the high-level
aspects of design, leaving the construction of the blocks
to the 3rd-party tools driven with PD Builder (described
below). PD Planner uses an abutted methodology
enabled by powerful optimization technologies and
provides Virtual Flat results.
PD Builder
PD Builder is the back end of the ReShape design
system. It is the control system that drives
implementation of the blocks through the 3rd-party tools.
In the picture shown below, you can see the spreadsheet-
style interface. The rows represent stages of the flow,
and each column represents a block in the design. The
flows are customizable in many ways. The simplest way

the flow can be changed is to choose a default flow for
the chip. Currently, timed and untimed variations are
available for Synopsys- and Cadence-based tool flows.
OpenFlows
Once a flow is chosen, each step or stage within the flow
can be parameterized through changing predefined vars
that control the execution of a given stage. It is possible
to set a different subflow for each block. For example, in
the figure above, block m0 could be using a Cadence
flow and block m1 could be using a Synopsys flow. This

Figure 4 PD Builder window building chip automatically

19.0

6.9

14.0

5.1

0
2
4
6
8

10
12
14
16
18
20

Top-level route (M) Repeaters (K)

-25% -26%

Initial starting point

ReShape + PKS, second pass

1.1M Instance Design
After One Optimization Pass

87.5

56.4

78.7

44.7

0
10
20

30
40
50
60
70

80
90

100

Top-level route (M) Repeaters (K)

4.6M Instance Design
After One Optimization Pass

-10% -23%

87.5

56.4

78.7

44.7

0
10
20

30
40
50
60
70

80
90

100

Top-level route (M) Repeaters (K)

4.6M Instance Design
After One Optimization Pass

-10% -23%

Figure 5 Effects of Design-Aware Optimization

Figure 5 PD Planner window with Replayable Floorplan

allows for a form of “what if” exploration to minimize
each block.
In addition to customizing each block with its own flow,
it is possible to customize the flows with user-written
stages that can add other 3rd-party or proprietary tools to
the flows driven through PD Builder.
Results
Three important scenarios are used to measure physical
design productivity:
The number of lines of code it takes to describe an SoC
The time to assemble the initial full-chip implementation
The time to assemble a revised, incremental floorplan and
netlist
First, most physical design team create 100’s of
thousands lines of script code to codify the construction
of a SoC. Because CLDA abstracts away the binding of
physical design intent from the netlist, technology, tools,
there is typically a 100X reduction in scripts required to
specify a SoC in a CLDA system vs. a cell-based
system—a productivity improvement of at least 10X.
Second, a team of eight designers takes six to nine weeks
to assemble and perform the initial build of a hierarchical
SoC with eight to 12 place and route blocks and one

million placeable instances. (This is a big reason why
full-chip analysis is often deferred to late in the design
cycle.) Comparable designs using ReShape tools take two
engineers just two weeks. The productivity gain for a
first build is at least 10X.
Third, and perhaps most important, is the time it takes to
support a design engineering change order, ECO. This is
the critical metric, because it enables efficient design
exploration in the early part of the design stage, and

accommodates the inevitable last-minute design changes
imposed by (1) the system verification uncovering bugs,
(2) the customer, or (3) the market. Using ReShape’s
CLDA tools, one engineer can build a completely new
design from a new floorplan and netlist in 24 hours. A
traditional tool methodology will take the eight-person
team from five to 14 days, depending on the extent of the
changes. The incremental productivity boost is at least
40X. It is this productivity boost that makes full-chip
physical design exploration, and dealing effectively with
late breaking ECOs practical. The bottom line is higher
quality chips on schedule. See Figures 7 and 8.

References

[Collet01] “Key Performance Indicators of Methodology
Capabilities,” presentation by Ron Collett, Numetrics
Corporation, at the Electronic Design Process Workshop,
2001, Foil 14, “ASSP Project Distribution by Design
Productivity, Design Capacity & Development Cost.”
http://www.eda.org/edps/edp01/SLIDES/collett.ppt

[Cong03] “Optimal Scalability Study of Existing
Placement Algorithms,” Cong, J, et al, Asia South Pacific
DAC, Asia South Pacific Design Automation
Conference, Kitakyushu, Japan, pp. 621-627, January
2003.

[IBS03] “Analysis of the Relationship between EDA
Expenditures and Competitive Positioning of IC Vendors,
a custom study for the EDA Consortium,” International
Business Strategies, Inc., 2003. Table 1.3, page 14, Head
Counts and Design Costs.
http://www.edac.org/downloads/resources/profitability/HandelJ
onesReport.pdf

[ITRS99] “Design Productivity Gap,” Figure 5, page 6,
International Technology Roadmap for Semiconductors,
1999 edition.
http://public.itrs.net/files/1999_SIA_Roadmap/Design.pdf

Mask Layout

Cell-Level Design
RTL

weeksweeks

Mask Layout

RTL
Hrs

Tapeout!Tapeout!Design ExplorationDesign ExplorationFirst
build

Chip-Level Design

ECO!ECO!

Schedule RiskSchedule RiskSchedule Risk

Figure 6 Shorter Iteration times means more iteration

21 20

28

16 15

10

16

12

6

11

4

21

42

0

5

10

15

20

25

30

35

40

45

Customer’s First
ReShape Tapeout

D
ay

s
to

 T
ap

eo
ut

D
ay

s
to

 T
ap

eo
ut

Industry norm.

ReShape Design Center Tapeouts

1st 2nd 3rd 4th 5th 6th 7th 8th 10th 11th9th 12th Multi-block
Hierarchical

DesignTapeout Track Record

Figure 7 Actual tool tapeout times from final netlist

http://www.eda.org/edps/edp01/SLIDES/collett.ppt
http://www.edac.org/downloads/resources/profitability/HandelJonesReport.pdf
http://www.edac.org/downloads/resources/profitability/HandelJonesReport.pdf
http://public.itrs.net/files/1999_SIA_Roadmap/Design.pdf

	ReShape, Inc., Mountain View, CA, USA
	Abstract
	Introduction
	Challenges in IC Physical Implementation
	Flow not an integrated part of the design data
	Single Vendor Solutions Insufficient
	Challenge is to manage uncertainty

	Chip-Level Design Automation
	The Next 10X in Productivity
	Making Hierarchy Work
	CLDA QoR
	PD Builder
	OpenFlows

	Results
	References

