
Using Tcl /CCI to 
Turn EDA Cousins into Sisters

Dwight Hill
Synopsys
Abstract
The Tcl language, augmented with the 
Synopsys Common Command Interpreter 
(CCI) and collections, is now the primary user 
interface for a suite of Design Implementation 
tools, each of which runs on a database 
optimized for its own purpose. This system 
provides efficient access to design and library 
data, while retaining flexibility in the 
architecture of the underlaying databases. Its 
success demonstrates that portability of 
interface is more important than portability of 
database.

Background and Motivation
All practical RTL-to-GDSII flows involve 
multiple tools supporting such diverse 
activities as simulation, synthesis, placement, 
routing, chip finishing and signoff timing. 
Whether these tools come from the same 
vendor or multiple vendors, they are each 
optimized to perform a specific function. High 
performance implies not only efficient 
algorithms, but representations for designs 
and libraries that are tuned to each application. 

While such multiple representations are key to 
good tool performance, if they are exposed to 
designers they can add overhead and lead to 
increased start up time, frustration, and overall 
time to results. Multiple interfaces can also 
make it difficult to reuse training materials or 
command scripts across tools.

One approach to this is to design an all 
encompassing data model that can represent 
the design and its libraries and other ancillary 
information from RTL through GDSII. Such 
an approach works by compromising the 
access for some operations (such as logic 
synthesis) in order to support other operations 
(such as slotting). Even if the system is 

designed from scratch, spanning such a wide 
spectrum can be an exercise in “robbing Peter 
to pay Paul”. Getting this to actually work 
over time can be problematic because the 
requirements for each level of design are 
constantly evolving, and new features must be 
integrated across a wide spectrum of views. 
But even when it works, it is unlikely to 
remain competitive with data models tuned to 
specific facets of the problem.

Requirements for an Interface
In order to be effective, an EDA interface must 
support observability and control and must do 
so efficiently and conveniently. That is, the 
interface must allow its users access to all the 
relevant information about the design and its 
environment (e.g. libraries, technologies, 
etc.). And it must allow all aspects of the 
design that can be modified to be modified 
using just the interface commands without 
resorting to external mechanisms such as hand 
editing, special GUI tools, or proprietary 
database packages. Conversely, since some 
information is not intended to be modified 
during a session, the interface should not 
enable modification of this data (e.g. timing 
libraries).

The effectiveness and efficiency of the 
interface needs to be such that the interface 
itself does not form a high percentage of the 
run-time or memory usage of the tool. For 
sake of concreteness, one might place this at 
10%. So the interface to a router, for example, 
that runs 10 hours on a million gate design, 
should not require more than 1 hour just 
supporting the interface, nor more than 10% of 
the memory or disk resources. If the router 
runs only 10 minutes, the interface should take 
less than one minute. Generally, interactive 
support is the most demanding. A graphical 
1



2

editor, for example, might respond to a mouse click 
command to move a group of wires in less than 1 
second. By this rule, the interface portion of the 
time should be less than 100 milliseconds. If the 
user embeds hundreds of commands into a script, 
and sources the script, the overall time per 
command is generally much less than 1 second. 
Thus, it makes sense to tune the interface to support 
its most demanding application: i.e. interactive/ 
scripted work. If the interface works well enough to 
support these it will probably be more than 
sufficient for other, more batch oriented 
applications.

Solution Description 
The solution described here is basically to use Tcl, 
with CCI and collections to present a unified 
interface to the multiple environments. Used in this 
way Tcl provides not just a user interface but 
actually an application interface, that human users 
and even some locally generated tools can build 
upon. Even GUI architectures can be built upon the 
Tcl/CCI/Collections layer with minimal overhead.

Background on CCI and Collections
The architecture of CCI involves enhancing 
standard Tcl, not modifying it. During input, CCI 
acts as a layer between the text typed in by a user 
and the standard Tcl interpreter. As the command 
is executed, CCI works between the tokens 
scanned by Tcl and the interpretation of those 
commands, to simplify the job of the C 
programmer who is implementing commands. An 
example of the first type of operation is the 
interception of array notation. In an ordinary Tcl 
shell, the square brackets “[]” denote the execution 
of a command inside a command. Thus the 
command

set x bus[3]

would trigger an error in ordinary Tcl because the 
token “3” is not an executable command. But CCI 
preprocesses this command to make the string 
“bus[3]” to be a token. This is critical because EDA 

objects often have brackets in them. Note that the 
[command ] syntax is still supported for actually 
invoking sub commands when needed.

An example of the second type of operation CCI 
provides would be processing a command like

set_false_pat -fro [get_pins abc/d*]

In this case, CCI would understand that 
“set_false_pat” was an abbreviation of 
“set_false_path”, and -fro was an abbreviation of 
“-from”. CCI would also handle the fact that the 
command actually has more than 12 non-required, 
named options: they could be specified in any 
order, and their interdependencies checked. For 
example, some options are mutually exclusive, 
have a range bound, or must be used with one of a 
specific enumerated set of tokens such as “low”, 
“medium” or “high”. The developer of commands 
need not check these conditions in his code, 
because commands that violate these syntax pre-
requisites are blocked by the CCI layer.

Other Tcl usability extensions include uniform 
help facilities, which are derived directly from the 
source code and are so guaranteed to be up to date, 
global Tcl variables with specific types and type 
checking, and more. For complete documentation 
on CCI, the reader should consult the Primetime 
User Guide: Advanced Timing Analysis manual.

Collections
Collection operations usually center around “get_” 
commands, as in

set inputs [get_ports -filter 
“direction==input” J*7]

This command finds all the ports that match the 
expression “J*7”, which might include “Jack77” or 
“J_7x7”, etc., and then filters them down by 
direction. In this case ports that are not of direction 
“input” are excluded. The remaining ports, if any, 
are stored in the Tcl variable “inputs”, as a 
collection.

Collections are efficient internal representations of 
design objects: they are not just strings or Tcl lists. 
They describe the class of the objects that comprise 



them: a collection with a port NN is completely 
distinct from a collection with a cell NN. The 
underlying implementation of collections can 
be tuned to the database that the tool operates 
on. If it is an in-memory representation, the tool 
can use ephemeral (C or C++) language 
objects. If the database has a persistent 
component, collections can be implemented 
using on-disk reference mechanism. But the 
user need not be concerned with this. To him or 
her, the semantics of collections are defined by 
the Tcl commands that create, modify and 
accept them. Removing collections is simple: 
as soon as the Tcl variable that is the handle of 
the collection is no longer accessible, the 
collection is freed.

The Tcl/CCI/collection syntax was popular 
enough that it has formed the basis of the 
Synopsys Design Constraint (SDC) language, 
which is now a widely accepted format for 
expressing design constraints. Its success 
demonstrates that portability of interface is 
more important than portability of database. 
However, SDC uses only a fraction of the 
power of Tcl/CCI/Collections, because most 
tools do not support the broad range of 
operations implied by CCI. These tools can 
process only timing constraints (not general 
commands), and cannot control the set of 
objects processed or extend themselves to new 
commands in a compatible manner.

Non collectable design informa-
tion
Note that not every design quantity is a first-
class object. For example, a layer known to a 
router is not collectable object, nor are 
operating conditions (for timing), nor in 
general points, lines, or rectilinear shapes. 
However, Tcl can easily express these concepts 
using it’s built in types which include integers, 
strings, lists of strings. To make these useful, 
however, the tools involved must agree on the 
syntax and semantics of these Tcl constructs. 
For example, the syntax for a distance is 
generally a fixed point number; the syntax for a 

point is a Tcl list with two elements, the first 
being the X coordinate and the second being 
the Y coordinate. These syntax and semantics 
can be enforced and leveraged with C and Tcl 
libraries that generate, validate, and accept 
parameters in this format.

Accessing these data can be accomplished 
through Tcl commands returning the 
appropriate values. Probably the most common 
command is “get_attribute”, which finds a 
particular attribute on a first class object. This 
attribute may be a string, such as its name, a 
list, such as its bounding box, or a collection, 
such as the set of nets that interact with it for 
signal integrity calculations. Tcl commands 
that return strings are convenient to use 
directly, because the result is printed directly at 
the terminal, and also convenient to use inside 
of Tcl procs where the results can be gathered 
up into Tcl variables and processed into a more 
useful format. N.B. Attributes on first class 
objects are not necessarily correlated with the 
datamodel structures. Unlike “common 
database” architectures, tools in a suite united 
by Tcl may generally attributes that are 
computed on the fly, rather than defined by a 
schema. Typical examples of these are the 
“area” attribute, which is computed by 
multiplying the difference in the corner 
coordinates, or the “wirelength” attribute, 
which is computed by traversing a potentially 
complex topology.

Putting Tcl/CCI/Collections onto a 
suite of tools
The most important decision when designing 
the interface provided by Tcl/CCI/Collections 
is determining the set of “first-class” objects 
that the tools will support. The names, 
attributes and semantics of these objects will 
determine much of the rest of the user interface. 
Generally, first-class objects are those that:

• may appear in collections
• have a name (although in some cases, 

this is not relevant or even directly ac-
3



4

cessible)
• can be obtained using a get_<class> com-

mand, such as “get_pins”
• may have attributes. All object classes have 

some attributes built-into the tool (such as 
“name” and “object_class”), but the tool 
will generally also support user-defined at-
tributes.

Obviously, the first set of objects that need to be 
implemented in a tool will include netlist items, 
such as nets, ports, and pins. Defining their 
semantics, however, is not always obvious. When 
tools come from distinct backgrounds, or work 
with users have differing expectations, the 
definition of “port” and “pin”, for example, may 
have been reversed in their original user 
presentation. By building a Tcl/CCI environment 
into the tools, the new interface has a chance to 
unify the concept. Internally, the tools may have 
different databases, such as Synopsys db, 
Milkyway, or Open Access, and these may have 
different “5-box” models for net lists, but when 
working through the Tcl interface they will appear 
to be equivalent. This can be accomplished even if 
the underlying representations are structurally 
disjoint. For example, the expression

get_cells a/b/c/d/e

may refer to a cell called “e” that is four levels deep 
in a hierarchy, with a parent named “d”. In some 
situations, it might refer to a cell called “a/b/c/d/e”, 
which is at the topmost (and only) level of the 
hierarchy. In general, placement and routing tools 
tend to have flatter hierarchies than logic synthesis 
or simulation tools that work with a deep logical 
hierarchy. But by agreeing on a common syntax 
and semantics for Tcl/CCI these tools can 
communicate efficiently and conveniently.

Internal Architecture Options
One of the advantages of a common Tcl interface is 
that it can be implemented in a variety of ways to 
leverage the strengths, and avoid the problems that 
may exist in a tool. The most common way to 
implement a Tcl /CCI command is to write a C (or 
C++) function that manipulates the design, and 

register the function with the CCI system. The 
command function can access data from the native 
tool representation, or even from other 
representations as needed. In fact it is even possible 
to have one representation create a collection and 
another command, written to accept another 
representation accept it by using a collection 
translation mechanism. For example, a command 
like “all_fanouts” might be conveniently 
implemented in a logical or timing environment. 
(This command returns a collection of pins that are 
in the logical fanout of a specified pin). A separate 
command, perhaps a placement or routing 
command (such as rip_up_route) could accept this 
collection even if it were implemented on a 
different representation. This translation function 
can be accomplished internally to the Collection 
system without programmer intervention (or even 
the knowledge that translation was taking place).

Because Tcl an extensible language it is possible to 
define new commands using preexisting Tcl 
commands or even commands in other languages, 
as needed. These can be integrated into the tool in 
such a way as to appear to be native commands, 
using “define_proc_attributes” so that the user 
procs are indestinguishable from vendor 
commands, with consistent options processing, 
help and documentation. Note that the set of 
potential benefactors of this includes CAE’s, field 
engineers, corporate CAD groups, etc. and is in the 
thousands. By contrast, only a relatively small 
number of C/C++ programmers work with a 
common data framework.

Objective: Sharing Scriptware
Any engineer who has used EDA software for 
more than about 15 minutes reads, writes and 
depends on scripts to make his or her flow work. If 
several tools use the same database, but have 
disparate interfaces, it may be OK to move a design 
from one tool to another, but it will be impossible 
to transfer a script written in one to another. But 
when the tools are united under Tcl/CCI it becomes 
feasible to share scripts. The wide acceptance of 



SDC is evidence of the success of this: SDC has 
been implemented in many tools, and many 
databases, from many companies.

Still greater integration is possible if the tools 
are intentionally architected to use the same Tcl 
interface. Rather than just having each tool 
define commands independently, it becomes 
possible for the commands to be pre-analyzed 
for compatibility (or at least non-interference.) 
Specifically, Tcl/CCI classes can be grouped 
into several categories:

• Objects common to all tools in the suite, 
such as nets, ports, etc. These generally 
must be supported in compatible man-
ner through the whole flow.

• Objects local to one tool (not present in 
any common database), such as slots in 
a slot-filling step.

• Objects common to two or more tools in 
the suite communicating through data-
bases or translators, but not necessarily 
understood by all other tools. For exam-
ple, physical implementation tools, 
such as routers and DRC engines will 
need “wire” objects, but logic simula-
tion tools will generally not need them.

The second most important thing in 
architecting these interfaces is that the same 
concept have the same name in all tools that use 
it. The Most Important Factor is that different 
concepts have different names in all tools. It 
would be major productivity hit if one tool 
considers a “bound” to be a a move bound (for 
keeping cells inside), and another tool 
considers it a limit on the power that a block 
may dissipate. It is almost as much of a disaster 
for EDA developers as for users. But the use of 
a common Tcl/CCI/Collection interface can 
avoid this situation. 

In addition to defining the object types 
consistently, object attributes names, and more 
importantly, semantics, should be coordinated. 
For example, the “bounding_box” attribute of 
all objects needs to be defined as consisting of 
a Tcl list comprised of one point (the lower-left 

corner) followed by another point (the upper-
right corner), in all tools that support it. If the 
tools use the same database, but choose to 
describe bounding boxes as four integers, it 
will be impossible to share scripts, or even 
training, across the tools.

Finally, command names need to be consistent. 
The SDC standard is commands with all lower 
case letters, with a verb_[modifier]_noun 
structure, as in get_cells, set_false_path, 
report_ports, or remove_objects. Since many 
of the <noun> clauses will follow the object 
class names selected, careful object class name 
selection will get you halfway to consistent 
command selection. The <verb> portion needs 
to be consistent across tools as much as 
possible, but it is generally OK to have each 
tool in the suite to have some unique verbs. 
After all, that is the tool’s raison d’être. 

Tcl as the Controlling Interface 
For Large Engines
Large complicated engines, such as timing 
analyzers or routers, have large complicated 
interfaces. Getting straightforward information 
like a netlist in is typically not an architecture 
problem. But controlling and accessing all of 
the engine’s facilities is. Large engines often 
support hundreds of operations, each with 
many options, and controlled by dozens of 
environment settings. When another system, 
such as a time budgeter, needs to interface with 
these large engines, the system needs access to 
essentially all the “knobs and meters” provided 
as part of the engine’s user interface. The 
classic way to provide this is to have one C 
function (or C++ method) to set or get each 
datum that would be controllable by the user 
interface. But this essentially doubles the size 
of the interface. Each facility must be 
supported in both a C/C++ language and user-
interface language format. [These API’s can 
get quite large. One standard has more than 
9Mbytes just of API.]
5



6

A more effective solution is to have the engine 
support a Tcl interface for the bulk of operations. 
The calling system can then assemble commands 
as strings, and have them evaluated by the engine. 
Likewise, it can retreive data back though the 
return values of Tcl commands. Moreover, bugs 
can be tracked down much more quickly and 
easily: the sequence of commands essentially 
comprises a bug report that is human readable, and 
often, replayable. 

Developing tools at this level provides a higher 
level of efficiency than the older style “object” or 
API based systems. There is no need to worry 
about memory management or garbage collection, 
design object typing is automatic, attributes can be 
extended without effecting global header files. All 
of these let the user focus on the function without 
getting stuck with lots of low-level C/C++ 
language issues. Perhaps equally importantly, tools 
developed in Tcl/CCI can ride out upgrades or even 
replacements in the data model much more easily, 
as long as the new model can support the same Tcl 
commands. Many parts of the tool will not even 
require recompilation.

Efficiency
In order to be effective the Tcl/CCI/Collections 
layer must not only be convenient for humans 
entering commands at a rate of one per second, but 
efficient enough to process thousands, or even tens 
of thousands of operations per second. Without this 
speed the interface would not really support 
scripting, since scripts, including SDC, tend to 
have sizes proportional to the size of the design. In 
the DSM era million-line SDC scripts are common.

Fortunately, the Tcl/CCI processor itself is very 
fast. With simple commands, its speed is almost 
limited by the ability to get large blocks of text over 
the network and into the Tcl parser. The collection 
mechanism is also efficient in two dimensions (at 
least). First, collections allow large groups of 
objects to be gathered together with minimum 
memory or CPU overhead independently of their 
names. A system that depends on storing the names 
of objects, by contrast, tends to bog down in large 

designs because these tend to have long names 
constructed by flattening of hierarchy. The other 
dimension of performance is the ability to access 
individual, or small groups of objects by name. 
This is typically important for timing constraints 
because timing constraints tend to be specified on 
individual objects, but there are so many 
constraints that each of them must be accessed 
quickly. Again, the collection mechanism has 
proven to be a portable, and effective way of 
dealing with many independent objects.

Summary
The Tcl based interface system described here 
represents an level of integration less tightly 
constrained (from a developer’s perspective) than 
the sharing of a common database, but more 
coordinated, from a user’s perspective, than 
multiple tools. Indeed, the distinction between 
multiple executables with compatible interfaces, 
and a single executable may be less than between 
different parts of a single large program. In several 
situations, particularly in timing, the use of Tcl/
CCI/collections has provided an efficient interface 
across not just multiple engines, but even across 
multiple companies, including Synopsys, Cadence, 
Magma and others.

Acknowledgements
The CCI/Collection system was designed and 
developed primarily by the CLT/Primetime group 
in the mid 1990’s. This group included Andy 
Siegel, Bill Mullen and others who contributed to 
the design and coding. Also, thanks Ulick Malone, 
Jeff Loescher, and Noel Strader who reviewed and 
enhanced this manuscript.


	Using Tcl /CCI to
	Turn EDA Cousins into Sisters
	Dwight Hill
	Abstract
	Background and Motivation
	Requirements for an Interface
	Solution Description
	Background on CCI and Collections
	set x bus[3]
	set_false_pat -fro [get_pins abc/d*]

	Collections
	set inputs [get_ports -filter “direction==input” J*7]

	Non collectable design information
	Putting Tcl/CCI/Collections onto a suite of tools
	get_cells a/b/c/d/e

	Internal Architecture Options
	Objective: Sharing Scriptware
	Tcl as the Controlling Interface For Large Engines
	Efficiency
	Summary
	Acknowledgements


