

A Policy-Based Approach to Guiding Low Power Design
Methodology

Bhanu Kapoor, Debabrata Bagchi, Satrajit Pal, Sanjay Churiwala

Atrenta Inc.
2001 Gateway Pl. 440W

San Jose, CA 95110

ABSTRACT

Every low power design is different and tends to have its own
interesting set of issues to solve. You have to think through
various elements of chip design if you want to operate at very
low power levels and you have to introduce appropriate design
techniques early in the design cycle. This article discusses a
policy-based approach to help guide the construction of a
design description such that it incorporates low power design
techniques as well as ensures adherence to new low power
design methodologies arising from advances in technology.

The first part of the paper describes the model for a policy
management system. A policy-based system that will allow
designer to define, in a succinct and organized fashion, design
policies that automatically point out low power design related
issues during the RTL code development process. The second
part of the paper presents a number of techniques that enable a
typical low power design methodology. We present some
examples of low power SoC design issues such as clock gating
and voltage management to address both dynamic and leakage
power consumption and how these issues can be addressed
early in the design cycle using a framework of policy-based
design methodology.

1. INTRODUCTION

Silicon technology now allows us to build chips consisting of
tens of millions of transistors. While this technology promises
new levels of system integration onto a single chip, it also
presents significant challenges in terms of figuring out a design
methodology for effective use of available transistors on a
single chip.

Battery life is often a key concern (and product differentiator) in
applications such as digital cellular telephones, personal digital
assistants, MP-3 players, and laptop computers. There is a great
deal of interest in reducing power consumption [3] of chips that
make up such systems. And even for the applications that are
line powered, such as cable modems and set-top-boxes, lower
power designs are a must to ensure lower cost and improved
reliability.

Processor and system designers have a number of ways to
decrease power consumption. These include using lower supply
voltages and taking advantage of power management features

where available, as well as some programming techniques for
reducing power consumption.

The challenge in designing for low power is that, until recently,
designers had no visibility into the power ramifications at the
design stage. The only tools that existed worked at later phases
of design cycle - much too late to make fundamental design
changes. Now, there finally are some techniques that can be
employed early in the design cycle, as the design is being
coded, that can make a big difference.

Every low power design is different and tends to have its own
interesting set of issues to solve. You have to think through
various elements of chip design if you want to operate at very
low power levels and you have to introduce appropriate design
techniques early in the design cycle. Power consumption is
proportional to the square of supply voltage, which means that
reducing a processor's supply voltage can result in dramatic
savings in power. For example, reducing the supply voltage
from 3.3 to 1.0 volts reduces power consumption by a factor of
10. Similarly, there is a direct dependence of power
consumption on capacitance and activity of nets. Being the most
active net in the design, clock nets tend to account for a large
proportion of dynamic power consumption.

As a result, design methodologies now being employed to
reduce power consumption include techniques such as
partitioning designs into multiple voltage domains to reduce
switching power, powering down certain portions of the chip to
reduce leakage of power, and gating the clock with appropriate
conditions when a part of the circuit is either holding the state
or inactive. A big part of the problem is in just ensuring that
these new design methodologies are being adhered to during the
creation of complex system-on-a-chip (SoC) designs.
Although very large (multi-million-gates) ASIC and SoC
designs are routinely manufactured, designing them correctly
and producing them on time, and in volume, with adequate
quality, all involve methodology of design. ASIC/SoC
methodologies are needed that offer designers integration of
complete systems with reusable blocks on a single chip.

We present a new methodology to accelerate the design of
complex ASICs and SoCs through predictive analysis and
policy-based RTL code development. This approach performs
detailed structural analysis on RTL in order to check coding
styles, RTL-handoff, design re-use, clock/reset requirements,
verification, timing, design for testability, low-power guidelines
and much more. Our focus in this paper is on issues related to

the low power design methodology involving SoCs. It requires
a "look-ahead" engine that is based on fast-synthesis technology
and a fast in-built cycle-based simulator to carry out such
analysis during the RTL code development process.

The rest of the paper is organized as follows: Section 2
describes the basic model for policy-based RTL design,
elements of policy enforcing engine, and the policy
management process. Several examples of low power design
issues and their application the context of policy-based
approach is described in section 3. We then conclude the paper
with a summary and a list of references.

2. POLICY-BASED APPROACH

What is needed is a comprehensive, policy-based system that
will allow designer to define, in a succinct and organized
fashion, design policies that automatically point out time
consuming downstream issues during the RTL code
development process. The end result is that time-to-market
goals are met and predictable schedules become a reality.

The goals of policy-based RTL design, outlined in this paper,
include creation of a system that addresses RTL design using
policies which guide the design process efficiently towards
design goals under given design constraints. Specifically, the
system performs many functions including:

o Policy Application
o Policy Creation
o Result analysis and reports

The main goals of analyzing such issues using policy-based
analysis include creation of a system that addresses RTL design
using policies that guide the design process efficiently towards
design goals under given design constraints. A policy is a
collection of rules for specific purpose such as rules associated
with certain standard or certain design tool. Policies can be
extended thus allowing one to develop and manage customized
groupings of rules more easily.

This is important in the context of low power in that every low
power design is different and tends to have its own interesting
set of issues to solve. Specifically, the system performs many
functions including: policy application, policy creation, and
policy analysis and reporting. Policy enforcement is enabled
through an engine consisting of fast synthesis, cycle-based
built-in simulation and switching analysis engine, and a fast
design database traversal working at a higher-level of
abstraction.

Basic elements constituting policy-based RTL design are now
explained a predictive analysis software that enables a policy-
based design methodology.

2.1 Policy

A policy is a collection of rules for a specific purpose, such as
rules associated with a standard, a silicon vendor, or a specific
design tool. Policies enhance user extensibility, allowing you to
develop and manage customized groupings of rules more easily.
The design methodology includes a set of policies that you can
select during the process of RTL code development. Examples

of such policies include lint, reuse [1, 2, 4, 5], verification,
timing, testability, specific design practice, a silicon vendor’s
requirements, and techniques for efficient usage of design tools.

2.2 Rule Groups

A collection of rules within a policy is termed a group.
Typically, groups consist of rules addressing a particular area of
interest in the RTL code. Groups are hierarchical, meaning that
a group can contain other lower-level rule groups as well as
individual rules. A group provides an additional level of
modularity in applying policies to a given RTL design.

Figure 1: Rule and Group Selection

2.3 Rules

A rule is the most fundamental element in the policy-based
management system. It describes a set of conditions that – when
checked by the policy engine – result in an indication of a
specific problem with the RTL code. Rules allow standard
analysis of the RTL code. An example of a policy, rule groups,
and rules in the SpyGlass system is shown in Figure 1. With
this system, you can selectively turn on specific groups or
specific rules within a group.

The result of applying policies to an RTL design is s set of rule
violations with different severity levels, cross-linking of these
violations with RTL code and schematic, and a process of
suggested correction of the issue in the RTL code. Each policy
can be tailored for application with a list of parameters. Figure 2
shows an example of parameters associated with a design policy
such as levels of logic, fanout, and the allowed size for
multiplexers.

Policy
Rule
Group Rule

Policy management involves the selection of rules and policies,
application of policy parameters, creation of new rules and
policies, policy result analysis, and report generation.

Figure 2: Parameters associated with a policy

2.4 Policy Engine

Policy enforcement is enabled through an engine consisting of
fast synthesis, fast cycle-based simulation, and a fast design
database traversal working at a higher-level of abstraction.

Policy engine accelerates electronic product development by
enabling development teams to capture, aggregate, distribute
and apply rules and requirements early in the development
cycle. The fast synthesis engine internally creates the design
structure and foresees downstream issues early in the
development cycle, thereby eliminating errors at the earliest
possible stage. Such an engine ensures that designs are always
compliant with design methodology by identifying, advising on
how to correct violations as the design progresses towards
completion. The engine preserves the correlation of RTL to the
fast-synthesis netlist so that any errors detected there can be
traced back to the origin for quick problem identification and
correction.

Although you can check many complex rules statically on the
internal synthesized structural view, other rules require some
understanding of the logic function of the design. This is
particularly true for testability-related checks. In order to
perform a testability check, you must use an evaluator. The
evaluator in the policy engine is a cycle-based simulator you
can use to resolve functional design constraints, as well as carry
out a simulation required to set up the design for testability
analysis.

Policy implementation requires a traversal engine that works on
the RTL netlist produced by fast synthesis. Policy engine
provides a rich set of functions for carrying out design traversal.

The connectivity information, coupled with the traversal
primitives, enable you to create rules that look for violations
across the design hierarchy.

3. LOW POWER DESIGN
METHODOLOGY MANAGEMENT

The ability to address potential low power design issues early in
the design cycle is critical to achieving high productivity in the
design process. Not only do we get more optimized designs as
we address these issues during the RTL code development but
also achieve an improved efficiency for the rest of the tool flow
being used in the design process. In addition, there is a lot to be
gained from having a truly golden RTL code for the current as
well as future implementations of these systems.

Most chips are fabricated using CMOS technology. To a first
order, the dynamic power consumption of CMOS circuitry is
given by the formula:

P = 1/2 *a*C *V^2 *f
where P is the power in Watts, a is the activity factor, C is the
load capacitance in Farads, V is the supply voltage in Volts, and
f is the clock frequency in Hertz. This equation suggests that
there are essentially three ways to reduce power:

o Reducing the supply voltage, V

o Decreasing the capacitive load, C

o Slowing down clock, f

o Reducing the net activity factor, a

A major issue in 0.13-micron and more advanced processes is
leakage power. Since the leakage current increases by
approximately factor of 5 for every generation of new process
technology, this is likely to be a dominant source of power
consumption in near future. One of the best ways to handle
leakage dissipation is to turn off portions of the design
completely during certain modes of system operation. Clearly,
such an approach has important design methodology
implications that need to be taken care of during the design
process. We will now discuss some examples of issues related
to the low power design methodology that can be addressed
through a policy-based infrastructure.

3.1 Elements of Low Power Design

Methodology

The design methodologies now being employed to reduce
power consumption include techniques such as partitioning
designs into multiple voltage domains to reduce switching
power, powering down certain portions of the chip to reduce
leakage of power, and gating the clock with appropriate
conditions when a part of the circuit is either holding the state
or inactive. Each of these design techniques can introduce
significant complexity in the design process. A big part of the
problem is in just ensuring that these new design methodologies

Value Parameter

are being adhered to correctly during the creation of complex
SoC designs.

3.1.1 Clock Gating
Clock nets account for a large proportion of dynamic power
consumption for two reasons: clocks are the most active nets in
the design, and clocks nets account for a large portion of
capacitive load associated with the design. While clock gating is
seen as a useful technique for reduce clock power consumption,
careful management of manually added gated clocks and those
that can possibly be introduced automatically by a tool becomes
a challenging problem if one has to obtain maximize the
benefits of gated clocks while keeping track of testability issues
that may arise as a result of adding gated clocks in the design.

It is important that a tool helping designers in the gating process
is able to understand the existing gated clocks in the design in
order to effectively guide the designer to introduce additional
gated clocks in the design. It is important that the designer is
able to analyze the impact of gated clocks in the design by
inspect the regions in the design being impacted by a given
gated clock.

In addition, the tool has to be able to analyze each flop in the
design to come up with a good set of candidates for clock gating
for a given design. In doing so, designer chosen heuristics
should guide these choices towards the ones that are going to
have the maximum impact on power consumption of the design.

A set of policies that can guide the clock gating process can
then include aspects such as:

o Identify and analyze existing gate clocks in the design

o Find candidates for clock gating driven by designer
guidance such as only look for candidates where a
minimum number of specified registers can be gated
together

o Using the knowledge of existing gated clocks in the
design, flag conditions where further gating may
result in back-to-back gating conditions

o Order candidates for clock gating based on likely
impact in reducing power consumption

o Ensure gated clocks are bypassed in the test mode
such that testability issues are taken care of during the
creation of gated clocks.

Figure 3 shows an example of execution of one such policy
related to finding a set of registers as candidate for clock gating.
Set of enabled registers in the design that share clocks and
enable can be a good candidate for clock gating for set sizes

Figure 3: Finding candidates for clock gating through early
analysis of the design

larger than a user specified limit. Such flops can be spread
across the design unit boundaries. In addition, flops with a
combinational feedback loop around them, indicating that data
is being held by that flop, become good candidates for clock
gating.

As the gated clocks are introduced in the design to achieve low
power goals, there are testability implications of having gated
clocks [6] in the design. One must ensure are all internally
generated and derived clocks by-passed in the test mode as the
design is being readied for insertion of scan chains. To get the
design ready for testability, the testability policy has rules
which address topology related issues as well as functionality
dependent issues. The topology related rules depend only on
part type, pins, and interconnections and functionality
dependent rules involve test mode, test clock pins, parameters
and circuit reset checks. The topology category includes rules
such as combinational feedback detection and port-to-port path
connection whereas functionality dependent rules deal with
issues such as tri-state contention and propagation of test clock
under test mode assertion.

Figure 4 illustrates a portion of a large chip where the RTL
designer provided a by-pass for both a derived clock and a PLL
generated clock so that both U1 and U2 were to be clocked by
the pin clk when the test mode pin, tm, was held at 1. The RTL
equation defining Mux 2 interchanged the connections from the
PLL clock and the direct clock so the test clock was not
controlling U2 in test mode. Values held constant in test mode
are colored green and lines receiving test clock pulses are
colored pink. The connection from Mux 1 to U1 is pink
indicating that a test clock pulse can reach U1. The line from
Mux 2 to U2 is not colored indicating that the by-pass clock,
clk, is not reaching U2 in test mode. The Mux 2 selector input
has the correct color for test mode so the problem of the
interchanged connections to the I0 pin and I1 pin is easily
diagnosed.

Shared
Clock

Shared
Enable

Gating
Candidates

Figure 4: Clock by-pass error and display of the clock
distribution in Test Mode

3.1.2 SoC Voltage Management Issues
Power consumption is proportional to the square of supply
voltage, which means that reducing a processor's supply voltage
can result in dramatic savings in power. For example, reducing
the supply voltage from 3.3 to 1.0 volts reduces power
consumption by a factor of 10. This allows for saving in power
consumption when scaling voltage based on throughput needs.

Operating only the most critical portions of the design at a
higher voltage allows for tremendous savings in power
consumption. For example, if a design only needs VDD for the
25% of the design and the rest of the design can be operated at
60% of the VDD without any impact on the throughput, this
simple arrangement of two voltage domains can cut the power
requirements into approximately half of the original
requirements if the full chip were to operate at VDD. Process
technologies now allow for creations of multiple voltage
domains in the design. Even though the idea of having voltage
domains is a relatively simple one, there are significant
methodology issues related to using the idea on a real chip
design. One such challenge is ensuring level conversion of the
signals that cross voltage domain boundaries. When partitioning
the design into multiple voltage domains, appropriate level
shifting elements are needed on signal crossing possible pairs of
voltage domains. Whether the insertion happens at RTL or at
the netlist-level, depending upon the design methodology in
place, RTL code can be used to guide the insertion and provide
a check against the final design netlist. Appropriate
methodology checks may need to be enforced at RTL, gate, and
layout levels of abstraction.

Figure 5 shows an instance of a signal crossing voltage domain
boundary on which a proper level shifter has not been placed. A
policy-based approach finds each crossing between all pairs of
specified voltage domain to find if there is a missing level
shifter on those signals.

While switching power is the most important contributor to the
total power consumption now, leakage power is playing an
increasing important role in determining the overall power
consumption of a given design. Sleep or idle modes typically

Figure 5: Missing level-shifters as a signal crosses
voltage domain boundary is cross-probed into code
and schematic

turn off the clock to all but certain sections of the processor to
reduce power consumption. Because CMOS power
consumption is proportional to signal toggling frequency,
turning off the clock to the processor can greatly reduce power
consumption. But the system may continue to dissipate leakage
power even under such modes of operation.

One of the best ways to handle leakage dissipation is to turn off
portions of the design completely during certain modes of
system operation. Clearly, such an approach has important
design methodology implications that need to be well taken care
of during the design process. In this scenario, signals to and
from domains that may be switched on and off require special
attention as they may introduce “floating net” issues. Proper
isolation methodology must be in place in order to avoid such
design issues and checked accordingly. A policy that allows
specification of power domains that can be shut down during
portions of design operation, understands isolation mode
conditions, and is able quickly synthesize and simulate this
scenario can be effectively used here. This is also a voltage
management issue that requires attention early in this design
cycle as either missing an isolation cell or putting an incorrect
isolation cell late in the design cycle is likely to result in a
possible costly re-spin of the design.

4. SUMMARY

Although very large (multi-million-gates) ASIC and SoC
designs are routinely manufactured, designing them correctly
and producing them on time, and in volume, with adequate
quality, all involve methodology of design. We have described a
design methodology based on policy-based RTL design with the
focus on low power issues. The elements of policy-based RTL
design have been outlined. Low power design involves
successfully placing a design methodology that may involves

Voltage
Domain 1 Voltage

Domain 2

 Missing
LevelShifter

 Missing
LevelShifter

Highlighted in
Code

multiple voltage domains, special techniques to deal with
leakage power, and a host of techniques that can be applied to
the construction of RTL code. In this regards, we have
described a policy-based approach to help guide the
construction of a design description such that it incorporates
low power design techniques as well as ensures adherence to
new low power design methodologies arising from advances in
technology.

5. ACKNOWLEDGMENTS

The author will like to thank Martin Baynes, Tom Carlstedt-
Duke, Aloke Das, Phil George, Sushil Gupta, Al Joseph, Sam
Lay, Ralph Marlett, Mo Movahed, Bernard Murphy, and
Ghulam Nurie, and Mona Singh for their valuable contributions
towards the preparation of this paper.

6. REFERENCES

[1] M. Keating and P. Bricaud, “Reuse Methodology Manual:
For System-on-a-Chip Designs”, Kluwer Academic Publishers,
2001.
[2] L. Bening and H. Foster, “Principles of Verifiable RTL: A
functional coding style supporting verification processes in
Verilog”, Kluwer Academic Publishers, 2001.
[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low
Power CMOS Digial Design”, IEEE Journal of Solid State
Circuits, pp. 473-484, April 1992.
[4] Semiconductor Technology Academic Research Center,
“STARC open Design Style Guide”, www.starc.or.jp/.
[5] OpenMORE, “The Industry Reference for IP Measure of
Reuse Excellence” www.openmore.com/
[6] R. Marlett, “Putting the D back into Design for Test”, EDA
Vision Magazine May 2002, www.atrenta.com

http://www.starc.or.jp/
http://www.openmore.com/
http://www.atrenta.com/

	1. INTRODUCTION
	2. POLICY-BASED APPROACH
	Policy
	Rule Groups
	Rules
	Policy Engine

	3. LOW POWER DESIGN METHODOLOGY MANAGEMENT
	Elements of Low Power Design Methodology

	4. SUMMARY
	5. ACKNOWLEDGMENTS
	6. REFERENCES

