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ABSTRACT 
 
Every low power design is different and tends to have its own 
interesting set of issues to solve. You have to think through 
various elements of chip design if you want to operate at very 
low power levels and you have to introduce appropriate design 
techniques early in the design cycle. This article discusses a 
policy-based approach to help guide the construction of a 
design description such that it incorporates low power design 
techniques as well as ensures adherence to new low power 
design methodologies arising from advances in technology. 

The first part of the paper describes the model for a policy 
management system. A policy-based system that will allow 
designer to define, in a succinct and organized fashion, design 
policies that automatically point out low power design related 
issues during the RTL code development process. The second 
part of the paper presents a number of techniques that enable a 
typical low power design methodology. We present some 
examples of low power SoC design issues such as clock gating 
and voltage management to address both dynamic and leakage 
power consumption and how these issues can be addressed 
early in the design cycle using a framework of policy-based 
design methodology.  

1. INTRODUCTION 
 
Silicon technology now allows us to build chips consisting of 
tens of millions of transistors. While this technology promises 
new levels of system integration onto a single chip, it also 
presents significant challenges in terms of figuring out a design 
methodology for effective use of available transistors on a 
single chip. 

Battery life is often a key concern (and product differentiator) in 
applications such as digital cellular telephones, personal digital 
assistants, MP-3 players, and laptop computers. There is a great 
deal of interest in reducing power consumption [3] of chips that 
make up such systems. And even for the applications that are 
line powered, such as cable modems and set-top-boxes, lower 
power designs are a must to ensure lower cost and improved 
reliability.  

Processor and system designers have a number of ways to 
decrease power consumption. These include using lower supply 
voltages and taking advantage of power management features 

where available, as well as some programming techniques for 
reducing power consumption.  

The challenge in designing for low power is that, until recently, 
designers had no visibility into the power ramifications at the 
design stage. The only tools that existed worked at later phases 
of design cycle - much too late to make fundamental design 
changes. Now, there finally are some techniques that can be 
employed early in the design cycle, as the design is being 
coded, that can make a big difference. 

Every low power design is different and tends to have its own 
interesting set of issues to solve. You have to think through 
various elements of chip design if you want to operate at very 
low power levels and you have to introduce appropriate design 
techniques early in the design cycle. Power consumption is 
proportional to the square of supply voltage, which means that 
reducing a processor's supply voltage can result in dramatic 
savings in power. For example, reducing the supply voltage 
from 3.3 to 1.0 volts reduces power consumption by a factor of 
10. Similarly, there is a direct dependence of power 
consumption on capacitance and activity of nets. Being the most 
active net in the design, clock nets tend to account for a large 
proportion of dynamic power consumption.   

As a result, design methodologies now being employed to 
reduce power consumption include techniques such as 
partitioning designs into multiple voltage domains to reduce 
switching power, powering down certain portions of the chip to 
reduce leakage of power, and gating the clock with appropriate 
conditions when a part of the circuit is either holding the state 
or inactive. A big part of the problem is in just ensuring that 
these new design methodologies are being adhered to during the 
creation of complex system-on-a-chip (SoC) designs.  
Although very large (multi-million-gates) ASIC and SoC 
designs are routinely manufactured, designing them correctly 
and producing them on time, and in volume, with adequate 
quality, all involve methodology of design. ASIC/SoC 
methodologies are needed that offer designers integration of 
complete systems with reusable blocks on a single chip. 

We present a new methodology to accelerate the design of 
complex ASICs and SoCs through predictive analysis and 
policy-based RTL code development.  This approach performs 
detailed structural analysis on RTL in order to check coding 
styles, RTL-handoff, design re-use, clock/reset requirements, 
verification, timing, design for testability, low-power guidelines 
and much more. Our focus in this paper is on issues related to 



 

 

the low power design methodology involving SoCs. It requires 
a "look-ahead" engine that is based on fast-synthesis technology 
and a fast in-built cycle-based simulator to carry out such 
analysis during the RTL code development process. 

The rest of the paper is organized as follows: Section 2 
describes the basic model for policy-based RTL design, 
elements of policy enforcing engine, and the policy 
management process.  Several examples of low power design 
issues and their application the context of policy-based 
approach is described in section 3. We then conclude the paper 
with a summary and a list of references. 

2. POLICY-BASED APPROACH 
 
What is needed is a comprehensive, policy-based system that 
will allow designer to define, in a succinct and organized 
fashion, design policies that automatically point out time 
consuming downstream issues during the RTL code 
development process. The end result is that time-to-market 
goals are met and predictable schedules become a reality. 
 
The goals of policy-based RTL design, outlined in this paper, 
include creation of a system that addresses RTL design using 
policies which guide the design process efficiently towards 
design goals under given design constraints. Specifically, the 
system performs many functions including: 

o Policy Application  
o Policy Creation  
o Result analysis and reports 

The main goals of analyzing such issues using policy-based 
analysis include creation of a system that addresses RTL design 
using policies that guide the design process efficiently towards 
design goals under given design constraints. A policy is a 
collection of rules for specific purpose such as rules associated 
with certain standard or certain design tool. Policies can be 
extended thus allowing one to develop and manage customized 
groupings of rules more easily.  

This is important in the context of low power in that every low 
power design is different and tends to have its own interesting 
set of issues to solve. Specifically, the system performs many 
functions including: policy application, policy creation, and 
policy analysis and reporting. Policy enforcement is enabled 
through an engine consisting of fast synthesis, cycle-based 
built-in simulation and switching analysis engine, and a fast 
design database traversal working at a higher-level of 
abstraction.  

Basic elements constituting policy-based RTL design are now 
explained a predictive analysis software that enables a policy-
based design methodology.  
 
2.1 Policy 
 
A policy is a collection of rules for a specific purpose, such as 
rules associated with a standard, a silicon vendor, or a specific 
design tool. Policies enhance user extensibility, allowing you to 
develop and manage customized groupings of rules more easily. 
The design methodology includes a set of policies that you can 
select during the process of RTL code development. Examples 

of such policies include lint, reuse [1, 2, 4, 5], verification, 
timing, testability, specific design practice, a silicon vendor’s 
requirements, and techniques for efficient usage of design tools.  
 
2.2 Rule Groups 
 
A collection of rules within a policy is termed a group. 
Typically, groups consist of rules addressing a particular area of 
interest in the RTL code. Groups are hierarchical, meaning that 
a group can contain other lower-level rule groups as well as 
individual rules. A group provides an additional level of 
modularity in applying policies to a given RTL design.  
 
 
 
 
 
 

 
 

Figure 1: Rule and Group Selection  
 
2.3 Rules 
 
A rule is the most fundamental element in the policy-based 
management system. It describes a set of conditions that – when 
checked by the policy engine – result in an indication of a 
specific problem with the RTL code. Rules allow standard 
analysis of the RTL code. An example of a policy, rule groups, 
and rules in the SpyGlass system is shown in Figure 1. With 
this system, you can selectively turn on specific groups or 
specific rules within a group.  
 
The result of applying policies to an RTL design is s set of rule 
violations with different severity levels, cross-linking of these 
violations with RTL code and schematic, and a process of 
suggested correction of the issue in the RTL code.  Each policy 
can be tailored for application with a list of parameters. Figure 2 
shows an example of parameters associated with a design policy 
such as levels of logic, fanout, and the allowed size for 
multiplexers.  
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Policy management involves the selection of rules and policies, 
application of policy parameters, creation of new rules and 
policies, policy result analysis, and report generation. 

 
 
 
 

 

 
 

Figure 2: Parameters associated with a policy 
 
2.4 Policy Engine 
 
Policy enforcement is enabled through an engine consisting of 
fast synthesis, fast cycle-based simulation, and a fast design 
database traversal working at a higher-level of abstraction.  
 
Policy engine accelerates electronic product development by 
enabling development teams to capture, aggregate, distribute 
and apply rules and requirements early in the development 
cycle. The fast synthesis engine internally creates the design 
structure and foresees downstream issues early in the 
development cycle, thereby eliminating errors at the earliest 
possible stage. Such an engine ensures that designs are always 
compliant with design methodology by identifying, advising on 
how to correct violations as the design progresses towards 
completion. The engine preserves the correlation of RTL to the 
fast-synthesis netlist so that any errors detected there can be 
traced back to the origin for quick problem identification and 
correction. 
 
Although you can check many complex rules statically on the 
internal synthesized structural view, other rules require some 
understanding of the logic function of the design. This is 
particularly true for testability-related checks. In order to 
perform a testability check, you must use an evaluator. The 
evaluator in the policy engine is a cycle-based simulator you 
can use to resolve functional design constraints, as well as carry 
out a simulation required to set up the design for testability 
analysis. 
 
Policy implementation requires a traversal engine that works on 
the RTL netlist produced by fast synthesis. Policy engine 
provides a rich set of functions for carrying out design traversal. 

The connectivity information, coupled with the traversal 
primitives, enable you to create rules that look for violations 
across the design hierarchy.  
 

3.  LOW POWER DESIGN 
METHODOLOGY MANAGEMENT 
 
The ability to address potential low power design issues early in 
the design cycle is critical to achieving high productivity in the 
design process. Not only do we get more optimized designs as 
we address these issues during the RTL code development but 
also achieve an improved efficiency for the rest of the tool flow 
being used in the design process. In addition, there is a lot to be 
gained from having a truly golden RTL code for the current as 
well as future implementations of these systems. 

Most chips are fabricated using CMOS technology. To a first 
order, the dynamic power consumption of CMOS circuitry is 
given by the formula: 

P = 1/2 *a*C *V^2 *f 
where P is the power in Watts, a is the activity factor, C is the 
load capacitance in Farads, V is the supply voltage in Volts, and 
f is the clock frequency in Hertz. This equation suggests that 
there are essentially three ways to reduce power:  

o Reducing the supply voltage, V  

o Decreasing the capacitive load, C  

o Slowing down clock, f  

o Reducing the net activity factor, a 

A major issue in 0.13-micron and more advanced processes is 
leakage power. Since the leakage current increases by 
approximately factor of 5 for every generation of new process 
technology, this is likely to be a dominant source of power 
consumption in near future. One of the best ways to handle 
leakage dissipation is to turn off portions of the design 
completely during certain modes of system operation.  Clearly, 
such an approach has important design methodology 
implications that need to be taken care of during the design 
process.  We will now discuss some examples of issues related 
to the low power design methodology that can be addressed 
through a policy-based infrastructure.  
 
3.1 Elements of Low Power Design 

Methodology 
 
The design methodologies now being employed to reduce 
power consumption include techniques such as partitioning 
designs into multiple voltage domains to reduce switching 
power, powering down certain portions of the chip to reduce 
leakage of power, and gating the clock with appropriate 
conditions when a part of the circuit is either holding the state 
or inactive. Each of these design techniques can introduce 
significant complexity in the design process. A big part of the 
problem is in just ensuring that these new design methodologies 
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are being adhered to correctly during the creation of complex  
SoC designs.  
 
3.1.1 Clock Gating  
Clock nets account for a large proportion of dynamic power 
consumption for two reasons: clocks are the most active nets in 
the design, and clocks nets account for a large portion of 
capacitive load associated with the design. While clock gating is 
seen as a useful technique for reduce clock power consumption, 
careful management of manually added gated clocks and those 
that can possibly be introduced automatically by a tool becomes 
a challenging problem if one has to obtain maximize the 
benefits of gated clocks while keeping track of testability issues 
that may arise as a result of adding gated clocks in the design.  

It is important that a tool helping designers in the gating process 
is able to understand the existing gated clocks in the design in 
order to effectively guide the designer to introduce additional 
gated clocks in the design. It is important that the designer is 
able to analyze the impact of gated clocks in the design by 
inspect the regions in the design being impacted by a given 
gated clock.  

In addition, the tool has to be able to analyze each flop in the 
design to come up with a good set of candidates for clock gating 
for a given design. In doing so, designer chosen heuristics 
should guide these choices towards the ones that are going to 
have the maximum impact on power consumption of the design.  

A set of policies that can guide the clock gating process can 
then include aspects such as: 

o Identify and analyze existing gate clocks in the design  

o Find candidates for clock gating driven by designer 
guidance such as only look for candidates where a 
minimum number of specified registers can be gated 
together 

o Using the knowledge of existing gated clocks in the 
design, flag conditions where further gating may 
result in back-to-back gating conditions  

o Order candidates for clock gating based on likely 
impact in reducing power consumption 

o Ensure gated clocks are bypassed in the test mode 
such that testability issues are taken care of during the 
creation of gated clocks.  

 
 
Figure 3 shows an example of execution of one such policy 
related to finding a set of registers as candidate for clock gating. 
Set of enabled registers in the design that share clocks and 
enable can be a good candidate for clock gating for set sizes  
 
 
 
 
 

 

Figure 3: Finding candidates for clock gating through early 
analysis of the design 

 
larger than a user specified limit. Such flops can be spread 
across the design unit boundaries. In addition, flops with a 
combinational feedback loop around them, indicating that data 
is being held by that flop, become good candidates for clock 
gating.   
 
As the gated clocks are introduced in the design to achieve low 
power goals, there are testability implications of having gated 
clocks [6] in the design. One must ensure are all internally 
generated and derived clocks by-passed in the test mode as the 
design is being readied for insertion of scan chains. To get the 
design ready for testability, the testability policy has rules 
which address topology related issues as well as functionality 
dependent issues. The topology related rules depend only on 
part type, pins, and interconnections and functionality 
dependent rules involve test mode, test clock pins, parameters 
and circuit reset checks. The topology category includes rules 
such as combinational feedback detection and port-to-port path 
connection whereas functionality dependent rules deal with 
issues such as tri-state contention and propagation of test clock 
under test mode assertion. 
 
Figure 4 illustrates a portion of a large chip where the RTL 
designer provided a by-pass for both a derived clock and a PLL 
generated clock so that both U1 and U2 were to be clocked by 
the pin clk when the test mode pin, tm, was held at 1. The RTL 
equation defining Mux 2 interchanged the connections from the 
PLL clock and the direct clock so the test clock was not 
controlling U2 in test mode. Values held constant in test mode 
are colored green and lines receiving test clock pulses are 
colored pink. The connection from Mux 1 to U1 is pink 
indicating that a test clock pulse can reach U1. The line from 
Mux 2 to U2 is not colored indicating that the by-pass clock, 
clk, is not reaching U2 in test mode. The Mux 2 selector input 
has the correct color for test mode so the problem of the 
interchanged connections to the I0 pin and I1 pin is easily 
diagnosed. 
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Figure 4: Clock by-pass error and display of the clock 
distribution in Test Mode 
 
3.1.2  SoC Voltage Management Issues  
Power consumption is proportional to the square of supply 
voltage, which means that reducing a processor's supply voltage 
can result in dramatic savings in power. For example, reducing 
the supply voltage from 3.3 to 1.0 volts reduces power 
consumption by a factor of 10. This allows for saving in power 
consumption when scaling voltage based on throughput needs.  

Operating only the most critical portions of the design at a 
higher voltage allows for tremendous savings in power 
consumption. For example, if a design only needs VDD for the 
25% of the design and the rest of the design can be operated at 
60% of the VDD without any impact on the throughput, this 
simple arrangement of two voltage domains can cut the power 
requirements into approximately half of the original 
requirements if the full chip were to operate at VDD. Process 
technologies now allow for creations of multiple voltage 
domains in the design. Even though the idea of having voltage 
domains is a relatively simple one, there are significant 
methodology issues related to using the idea on a real chip 
design. One such challenge is ensuring level conversion of the 
signals that cross voltage domain boundaries. When partitioning 
the design into multiple voltage domains, appropriate level 
shifting elements are needed on signal crossing possible pairs of 
voltage domains. Whether the insertion happens at RTL or at 
the netlist-level, depending upon the design methodology in 
place, RTL code can be used to guide the insertion and provide 
a check against the final design netlist.  Appropriate 
methodology checks may need to be enforced at RTL, gate, and 
layout levels of abstraction.  

Figure 5 shows an instance of a signal crossing voltage domain 
boundary on which a proper level shifter has not been placed. A 
policy-based approach finds each crossing between all pairs of 
specified voltage domain to find if there is a missing level 
shifter on those signals. 

While switching power is the most important contributor to the 
total power consumption now, leakage power is playing an 
increasing important role in determining the overall power 
consumption of a given design. Sleep or idle modes typically  

 
 

 
Figure 5: Missing level-shifters as a signal crosses 
voltage domain boundary is cross-probed into code 
and schematic 
 
turn off the clock to all but certain sections of the processor to 
reduce power consumption. Because CMOS power 
consumption is proportional to signal toggling frequency, 
turning off the clock to the processor can greatly reduce power 
consumption. But the system may continue to dissipate leakage 
power even under such modes of operation. 

One of the best ways to handle leakage dissipation is to turn off 
portions of the design completely during certain modes of 
system operation.  Clearly, such an approach has important 
design methodology implications that need to be well taken care 
of during the design process. In this scenario, signals to and  
from domains that may be switched on and off require special 
attention as they may introduce “floating net” issues. Proper 
isolation methodology must be in place in order to avoid such 
design issues and checked accordingly.  A policy that allows 
specification of power domains that can be shut down during 
portions of design operation, understands isolation mode 
conditions, and is able quickly synthesize and simulate this 
scenario can be effectively used here. This is also a voltage 
management issue that requires attention early in this design 
cycle as either missing an isolation cell or putting an incorrect 
isolation cell late in the design cycle is likely to result in a 
possible costly re-spin of the design. 

 

4. SUMMARY 
 
Although very large (multi-million-gates) ASIC and SoC 
designs are routinely manufactured, designing them correctly 
and producing them on time, and in volume, with adequate 
quality, all involve methodology of design. We have described a 
design methodology based on policy-based RTL design with the 
focus on low power issues. The elements of policy-based RTL 
design have been outlined. Low power design involves 
successfully placing a design methodology that may involves 
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multiple voltage domains, special techniques to deal with 
leakage power, and a host of techniques that can be applied to 
the construction of RTL code. In this regards, we have 
described a policy-based approach to help guide the 
construction of a design description such that it incorporates 
low power design techniques as well as ensures adherence to 
new low power design methodologies arising from advances in 
technology. 
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