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1. Introduction  
 
 
Designing for lower power has become the 
hot topic of the day not only at electronics 
conferences and tradeshows, but down in the 
trenches where designers are being told to 
cram more functionality into smaller designs 
that must run faster than last year’s designs. 
And, oh yes, these new designs, especially in 
the consumer electronics market, must when 
implemented have low power usage profiles 
to minimize battery usage. 
 
This article discusses a system-level 
methodology offered by ChipVision Design 
Systems that seeks to identify potential 
“power bottlenecks” as early in the design 
process as possible, specifically at the 
“Electronic System Level” (“ESL”).  There is 
no claim that lower level power analysis and 
remediation will no longer be required.  
Rather, the notion is that lower level power 
analysis and optimization tools can be more 
efficiently be used if a large number of 
power-related issues are handled at higher 
levels of abstraction. 

2. Where ORINOCO fits in the 
design flow 
 
ORINOCO is used as part of a HW design 
methodology in which algorithms are initially 
captured in C or SystemC and eventually are 
implemented (often as blocks in a larger 
design) using a logic synthesis-based flow.  

                                                 
1 ORINOCO is a registered trademark of ChipVision 
Design Systems.  All other trademarks and registered 
trademarks mentioned in this paper are the intellectual 
property of their respective owners 

ORINOCO operates upon the C/SystemC® 
algorithms before implementation in an effort 
to reduce as many power usage issues as 
possible before implementation begins.     
 
ORINOCO works optimally on designs that 
are data-dominated, as are typically found in 
signal processing applications.  This ought to 
be not surprising, given that devices that do 
lots of data processing (often signal 
processing) such as wireless and multimedia 
devices, have severe power-related issues 
that result most notably in limited time 
between battery recharges or replacement.  
Indeed, ORINOCO fits into this part of the 
design spectrum quite nicely, since designers 
in the wireless and multimedia world have 
long used an ESL methodology using tools 
such as MATLAB®, SPW® and Cossap®. 
 
 

3. Power Analysis Without 
Orinoco 
 
The traditional approach to designing for 
lower power is to estimate and analyze 
power consumption in designs at the register 
transfer level (RTL) or the gate level, and to 
modify the design accordingly. In the best 
case, only the RTL within given functional 
blocks is modified, and the blocks re-
synthesized. The process is repeated until 
the desired power results are achieved.  This 
is shown in figure 1. 
 
Unfortunately, the desired power 
consumption reductions may often be 
achieved only by modifying the basic 
architecture – and even the algorithms – of 
the design. However, modifications at this 
level affect not only power consumption, but 
also other performance metrics, and may 
actually significantly affect the economics of 
the chip. Thus, such modifications require re-
evaluation and re-verification of the entire 
design, followed by a re-synthesis of the 
design. 
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Figure 1: Power Analysis Without ORINOCO 

 
Relatively simple modifications upon existing 
designs, such as datapath optimization, may 
achieve power reductions of the order of 
30%, with a delay of several weeks. 
However, a more far-reaching architectural 
and algorithmic re-design necessary to 
reduce power by up to 75% may take 
months. 
 
There is another less obvious issue in the 
case where reiteration to the higher level is 
necessary—availability of the right people to 
do the necessary algorithmic/architecture 
changes.  Very few companies have a 
methodology where a system-level design 
team sits waiting to see whether the 
implementation team has issues for them.  
Indeed, it is usually the case that team that 
designed the front end will mostly have gone 

onto a new project once they handed the 
design off to the implementation team.  
Reassembling front end team to redo the 
data path or general architecture and 
algorithmic rework may, thus, be nearly 
impossible.   
 
 

4. ORINOCO- The ESL Power 
Analysis Solution 

 
Figure 2 shows an alternative to the situation 
where design iteration, including potential 
“reverse hand off” back to the front end 
team.  Simply put, this flow is based around 
the notion that the earlier that power 
tradeoffs can be made, the better.  Such 
early power analysis promises benefits both 
in terms of the speed at which these 
tradeoffs can be made, and the avoidance of 
costly front-end/back-end reiterations.  
 
 
The system specification defines system 
requirements, and is expressed at a very 
high level of abstraction. This specification is 
usually written in a standard language, such 
as C/C++ or SystemC. 
 
Using this system specification, algorithms 
that realize system functionality are 
developed and optimized, generally in those 
same standard languages. The algorithmic 
description consists of an executable 
specification, or functional description. It can 
be written as a behavioural description, 
which can be refined into a bit-accurate, pure 
functional design description. 
 
 
After this the architecture, i.e., memory, 
controller and the data path structure, is 
developed to implement the given 
algorithms. Of course, while during such 
architectural development multiple design 
constraints, such as power, as well as 
performance and area ought to be taken into 
account—but, of course, often are not at the 
ESL—often because there are no structured 
tools available to carry out such analysis. 
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Figure 2: System-Level Low Power Design 
Flow 
 
In ESL design using ORINOCO, power-
optimal algorithms and architectures are 
developed according to the methodology flow 
in figure 3. It should be noted that system-
level optimization targets dynamic power 
consumption, Pload, which is calculated from 
four factors, namely, clock frequency, the 
square of the supply voltage, load 
capacitance and average switching activity. 
Short-circuit power and leakage powers are 
optimized at lower levels of abstraction. 
 

 

 
 
Figure 3: Design of Power-Optimal 
Algorithms and Architectures 
 
Candidate algorithms are analyzed for their 
power characteristics, and to identify 
potential function-level hot spots. The most 
promising algorithms are then selected and 
optimized. This is then followed by creation 
of a power optimal system architecture. The 
optimal power-consuming functions are then 
transformed into hardware. The process is an 
iterative one of power estimation and 
optimization, with each iteration consuming 
minutes or hours, rather than days or weeks. 
 
4.1 Algorithm Analysis and 
Optimization 
 
In ORINOCO, the best algorithm to 
implement the specification is selected from 
the most appropriate candidate algorithms. 
“Power Bottlenecks” of each algorithm are 
identified and the algorithm optimized by 
algorithm transformation, as appropriate. 
 
Analysis of the power consumption for a 
given algorithmic specification proceeds 
according to the flow shown in figure 4. The 
C/SystemC specification must first undergo 
compilation and instrumentation. 
Instrumentation is the process of inserting 
the profiling statements necessary to derive 
the switching activity at each defined 
operation in the source code. The algorithms 
are then executed, and the resulting activity 
profile data is used to annotate a suitable 
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design representation, a control data flow 
(CDF) graph. Any number of power 
estimations may then be performed to 
determine the power characteristics of any 
given configuration. 
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Figure 4: Algorithm Power Estimation Using 
a Control Data Flow Graph 
 
A power-optimized architecture can be 
derived in ORINOCO from this graph without 
executing a complete synthesis, utilizing 
power models created for each RT-level 
component. These models depend on the 
input data, component characteristics such 
as bit width and architecture, and the 
underlying technology or cell library. The 
power models may be generated 
automatically for a given technology. Using 
the switching activity and the power models, 
the power consumption of a component can 
be estimated. 
 
Algorithm transformation techniques in 
ORINOCO include operator substitutions, and 
code transformations. Code transformations 
include transformations on conditional 
statements, loop splitting, and loop unrolling. 
Control statement reduction has a significant 
impact on the power consumption, and such 
transformations are often best effected via 
loop transformations. An example of the 
power reduction effects of loop unrolling and 
common case optimization techniques is 
shown in figure 5. The results show the 
power consumption for the original algorithm 
(matrix_simple), the algorithm optimized 

with loop unrolling (matrix_unrolled), and 
the matrix optimized by common case 
techniques, (matrix_ccase_opt). 
 
 
 
// loop unrolling
void matrix_unrolled( int a[16], int b[16], int c[16] )
{

// column * row
int x, y;
for ( y = 0; y < 4; y++ )
{

for ( x = 0; x < 4; x++ )
{

int sum = 0;
sum = sum + me(a,x,0) * me(b,0,y);
…

int idx;
idx = x+y*4;
c[idx] = sum;

}
}

}

// common case (zero) - optimized
void matrix_ccase_opt( int a[16], int b[16], int c[16]
)
{

// column * row
int x, y;
for ( y = 0; y < 4; y++ )
{

for ( x = 0; x < 4; x++ )
{

int sum = 0;
int tmp, tmp2;

// Common case optimization to save a
// memory access and a multiplication, if
// a zero value is encountered.
//
tmp = me(b,0,y);
if ( tmp > 0 )
{

sum = sum + me(a,x,0) * tmp;
}
tmp = me(b,1,y);
if ( tmp > 0 )
{

sum = sum + me(a,x,1) * tmp;
}

                   ...

 
 
Figure 5: ORINOCO Power Analysis Before 
and After Loop Unrolling 
 
An example of how the best algorithm can be 
selected in ORINOCO using the initial 
specification and the input data stream is 
shown in figure 6. The benchmark consists of 
two JPEG decompression algorithms, one in 
which very little data is lost during 
compression, and one that is faster but more 
lossy. The benchmark compares the energy 
consumption of the two algorithms resulting 
from the processing of two different input 
streams: a high quality stream – with a low 
compression ratio – consisting of 99% of the 
original data, and a fast stream consisting of 
30% of the original data.  
 
It can be seen that the fast (lossy) algorithm 
use less power consumption, while the 
accurate algorithm consumes more power 
when processing the fast stream. Analysis of 
such algorithms without ORINOCO would 
have been messy—to say the least, and 
would have taken weeks—as opposed to 
minutes with ORINOCO. 
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Figure 6: Energy Consumption of Two JPEG 
Algorithms in ORINOCO 
 
4.2 Architecture Analysis and 
Optimization 
 
Algorithmic estimation and optimization are 
followed in ORINOCO by the creation of a 
power-optimal architecture. This includes 
memory architecture, scheduling, number 
and types of resources, how those resources 
are shared and bound to the algorithm 
operators, type of data encoding, controller 
design, floor plan and clock tree design. 
 
The optimal power-consuming algorithm is 
transformed into hardware. This trans- 
formation consists of a number of complex 
decisions involving scheduling, allocation and 
binding. Scheduling determines the clock 
cycle during which an operation is executed; 
allocation determines the type and the 
number of resources to be used; binding is 
the mapping of operations onto resources 
determined during allocation. Furthermore, 
resources can be distinguished not only by 
their function, but also by their internal 
architecture. For instance, an adder can be 
realized as a carry-ripple or a carry-select 
adder. 
 
Figure 7 shows a scheduling graph in 
ORINOCO. In this graph, the designer is able 
to see for a particular process, the functional 
units used in an implementation (multipliers, 
adders and subtractors in this case), the 
cycles in which the units are active—
including multi-cycle use of the multipliers—
and the relationships between these units. 
 

   

 
 
Figure 7.  A Scheduling Graph in ORINOCO 
 
This is clearly a large design space with 
multiple degrees of freedom, each with its 
own trade-offs and power consumption 
characteristics. Bounding this space is 
effected by decomposing the specification 
into a series of function calls, each of which 
may be seen as pure function views of 
subtasks in a complex computation.  
 
Memories are utilized for both intermediate 
information storage and inter-block 
communication. Thus, they have a significant 
effect on chip power consumption, and 
sometimes account for the majority of it – up 
to 80% in some SOC designs. Consequently, 
optimizing memory hierarchy and structure 
as early as possible is a major step in 
meeting power consumption constraints.   
 
Common techniques for optimizing memory 
access and memory system performance 
include basic loop transformations such as 
loop interchange, loop tiling, and loop 
unrolling; array contraction; scalar 
replacement; and code co-location. Most of 
these techniques can be affected simply by 
rewriting code.  
 
Selection of the best optimizations is 
facilitated by the visual display of power 
analysis results, as shown in figure 8. The 
graphic shows an analysis of the power 
consumption of algorithms used in a digital 
signal processing application – a Wavelet 
(signal compression) transform. The bar 

AAccccuurraattee  FFaasstt  AAllggoorriitthhmm PPiiccttuurree QQuuaalliittyy 
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graph shows the power consumed, while the 
memory access traces show memory usage. 
It can be seen that intra-array optimization 
reduces power consumption from 19.2µWs to 
12.1µWs, or 37%. Inter-array optimization – 
memory size reduction by mapping arrays 
onto the same addresses of another array – 
reduces the consumption by another 1.2µWs, 
yielding a total 43% reduction. 
 

 
 
Figure 8: ORINOCO Power Analysis of A 
Wavelet Transform Mapped To Different 
Memories 

5. Who Are ORINOCO’S Users? 
 
The above discussion leaves open the 
question as to what sort of designer would 
actually use a product like ORINOCO that 
gives power analysis— analysis of what is 
very much a physical effect--at the ESL, 
where physical effects have traditionally been 
an afterthought at best. 
 
The answer really depends on the nature of 
the organization into which ORINOCO is 
introduced. Is there a desire to change the 
situation to which we referred at the end of 
the last paragraph or, rather, a desire to 
cope with it.  
 
To see the situation more starkly, consider 
that one sure way to start a brawl at the 
holiday party of an electronics party is to get 
some “back end”, i.e., implementation, 
engineers together with “front end”, i.e., 
system-level architects and ask the former 
group what they think about the designs that 
are “thrown over the wall”.  The back end 
people will typically roll out a list of horror 

stories about designs that architects have 
given them that would require a rollback of 
the laws of nature to implement.   The front 
end people will mumble something about 
“synthesis jocks”, and note that their 
mathematically elegant algorithms are the 
“secret sauce” that makes the finished 
products so successful.  The discussion can 
only go downhill from there. 
 
There are several points that have to drawn 
out of this fanciful inter-group “discussion”.  
First, system-level designers typically do not 
understand physical effects.  They are often 
trained as mathematicians or pure computer 
scientists (as opposed to those CS people 
who get their hands dirty in HW-related 
issues). For such people providing 
information regarding the physical 
implications, e.g., the power usage, of their 
designs may be not very useful—even a 
child’s text in Hindi is incomprehensible to 
someone who does know Hindi. 
 
Moreover, even if system level designers do 
have the background and interest in 
understanding, for example, the power 
implications of their algorithms, it has not 
traditionally been very easy for them to 
discern those implications.  Before an 
implementation of the algorithm exists, they 
can at best guess based on experience or use 
crude spreadsheet-based techniques.  After 
implementation, on the other hand, physical 
information about that implementation is 
usually so detailed that it is unrealistic to 
think that many higher-level designers could 
understand it.   
 
On the other side of the front-end/back-end 
divide, it should be pointed out that the RTL 
designers who are given algorithms for 
implementation generally are neither expert 
in either algorithm development or in lower-
level physical analysis.  Thus, their challenge 
is to take a complex algorithm, understand 
it, and convert it into an RTL design keeping 
things like a power budget clearly in mind.  
Insofar as they can be given tools that help 
them analyze the algorithms they have been 
given and help them explore, for example, 
the power ramifications of various 
architectures, the better.   

10.9 µWs12.1 19.2 

iinnttrraa aarrrraayy  ooppttiimmiizzaattiioonn  iinntteerr aarrrraayy  ooppttiimmiizzaattiioonn  
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This leads us to answer the question as to 
whom ORINOCO is targeted. In organizations 
where there is a desire to have system-level 
designers take a bigger role in vetting their 
algorithmic designs with regard to power 
consumption, ORINOCO can be of great use, 
since it can provide power-related  
information in a easy to understand manner 
to algorithm developers.  It still requires such 
designers to have the ability and desire to 
interpret the information it provides, but it 
avoids deluging the designer with counter-
productive reams of lower-level information. 
 
On the other hand, in organizations where 
system-level designers will remain agnostic 
with regard to physics, ORINOCO can be 
productively used by the consumers of the 
C/SystemC algorithms, rather than the 
producers.  In such cases, the detailed 
reports provided by ORINOCO can be used to 
both analyze the structure of the algorithms 
to be implemented and to explore various 
energy efficient architectures of those 
algorithms and to request changes to those 
algorithms when what has been designed 
cannot be implemented efficiently from a 
power standpoint. 
 
Of course, there will be mixtures of these 
two organizations.  In the ideal, ORINOCO 
can be used both system-level designers and 
the designers at the front end of the design 
flow who consume the system-level design.  
Indeed, in the best case, ORINOCO can serve 
as a method of communication between the 
two groups to make sure that what is 
implemented has been properly analyzed 
with regard to power consumption. 

Conclusion 
 
An ESL design methodology supported by the 
appropriate automation tools is the fastest 
and most effective method of designing 
complex chips for lower power. Moreover, it 
significantly reduces the risk of not meeting 
(often stringent) power constraints by the 
early identification of function-level hot 
spots, and enabling the analysis and 
selection of alternative solutions. ORINOCO, 

which was introduced in this paper, is 
ChipVision’s implementation of such an ESL 
methodology. 
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