

System-Level Design For Lower Power Page 1 of 7

Low-Power Analysis
Using ORINOCO®1

By Dr. Stanley J. Krolikoski, Dr.

Wolfgang Nebel and Dr. Laila Kabous

1. Introduction

Designing for lower power has become the
hot topic of the day not only at electronics
conferences and tradeshows, but down in the
trenches where designers are being told to
cram more functionality into smaller designs
that must run faster than last year’s designs.
And, oh yes, these new designs, especially in
the consumer electronics market, must when
implemented have low power usage profiles
to minimize battery usage.

This article discusses a system-level
methodology offered by ChipVision Design
Systems that seeks to identify potential
“power bottlenecks” as early in the design
process as possible, specifically at the
“Electronic System Level” (“ESL”). There is
no claim that lower level power analysis and
remediation will no longer be required.
Rather, the notion is that lower level power
analysis and optimization tools can be more
efficiently be used if a large number of
power-related issues are handled at higher
levels of abstraction.

2. Where ORINOCO fits in the
design flow

ORINOCO is used as part of a HW design
methodology in which algorithms are initially
captured in C or SystemC and eventually are
implemented (often as blocks in a larger
design) using a logic synthesis-based flow.

1 ORINOCO is a registered trademark of ChipVision
Design Systems. All other trademarks and registered
trademarks mentioned in this paper are the intellectual
property of their respective owners

ORINOCO operates upon the C/SystemC®
algorithms before implementation in an effort
to reduce as many power usage issues as
possible before implementation begins.

ORINOCO works optimally on designs that
are data-dominated, as are typically found in
signal processing applications. This ought to
be not surprising, given that devices that do
lots of data processing (often signal
processing) such as wireless and multimedia
devices, have severe power-related issues
that result most notably in limited time
between battery recharges or replacement.
Indeed, ORINOCO fits into this part of the
design spectrum quite nicely, since designers
in the wireless and multimedia world have
long used an ESL methodology using tools
such as MATLAB®, SPW® and Cossap®.

3. Power Analysis Without
Orinoco

The traditional approach to designing for
lower power is to estimate and analyze
power consumption in designs at the register
transfer level (RTL) or the gate level, and to
modify the design accordingly. In the best
case, only the RTL within given functional
blocks is modified, and the blocks re-
synthesized. The process is repeated until
the desired power results are achieved. This
is shown in figure 1.

Unfortunately, the desired power
consumption reductions may often be
achieved only by modifying the basic
architecture – and even the algorithms – of
the design. However, modifications at this
level affect not only power consumption, but
also other performance metrics, and may
actually significantly affect the economics of
the chip. Thus, such modifications require re-
evaluation and re-verification of the entire
design, followed by a re-synthesis of the
design.

System-Level Design For Lower Power Page 2 of 7

Figure 1: Power Analysis Without ORINOCO

Relatively simple modifications upon existing
designs, such as datapath optimization, may
achieve power reductions of the order of
30%, with a delay of several weeks.
However, a more far-reaching architectural
and algorithmic re-design necessary to
reduce power by up to 75% may take
months.

There is another less obvious issue in the
case where reiteration to the higher level is
necessary—availability of the right people to
do the necessary algorithmic/architecture
changes. Very few companies have a
methodology where a system-level design
team sits waiting to see whether the
implementation team has issues for them.
Indeed, it is usually the case that team that
designed the front end will mostly have gone

onto a new project once they handed the
design off to the implementation team.
Reassembling front end team to redo the
data path or general architecture and
algorithmic rework may, thus, be nearly
impossible.

4. ORINOCO- The ESL Power
Analysis Solution

Figure 2 shows an alternative to the situation
where design iteration, including potential
“reverse hand off” back to the front end
team. Simply put, this flow is based around
the notion that the earlier that power
tradeoffs can be made, the better. Such
early power analysis promises benefits both
in terms of the speed at which these
tradeoffs can be made, and the avoidance of
costly front-end/back-end reiterations.

The system specification defines system
requirements, and is expressed at a very
high level of abstraction. This specification is
usually written in a standard language, such
as C/C++ or SystemC.

Using this system specification, algorithms
that realize system functionality are
developed and optimized, generally in those
same standard languages. The algorithmic
description consists of an executable
specification, or functional description. It can
be written as a behavioural description,
which can be refined into a bit-accurate, pure
functional design description.

After this the architecture, i.e., memory,
controller and the data path structure, is
developed to implement the given
algorithms. Of course, while during such
architectural development multiple design
constraints, such as power, as well as
performance and area ought to be taken into
account—but, of course, often are not at the
ESL—often because there are no structured
tools available to carry out such analysis.

Flow Without ORINOCO
C/SystemC
Algorithm

ok?

 gain: 30%
 time: weeks

 gain: 75%
 time: months

design backend

 gain: 15%
 time: days

Synthesiss
Design analysis, power

estimation

- RT-level design

Architecture definition
Memory optimization

Datapath optimization

System-Level Design For Lower Power Page 3 of 7

Figure 2: System-Level Low Power Design
Flow

In ESL design using ORINOCO, power-
optimal algorithms and architectures are
developed according to the methodology flow
in figure 3. It should be noted that system-
level optimization targets dynamic power
consumption, Pload, which is calculated from
four factors, namely, clock frequency, the
square of the supply voltage, load
capacitance and average switching activity.
Short-circuit power and leakage powers are
optimized at lower levels of abstraction.

Figure 3: Design of Power-Optimal
Algorithms and Architectures

Candidate algorithms are analyzed for their
power characteristics, and to identify
potential function-level hot spots. The most
promising algorithms are then selected and
optimized. This is then followed by creation
of a power optimal system architecture. The
optimal power-consuming functions are then
transformed into hardware. The process is an
iterative one of power estimation and
optimization, with each iteration consuming
minutes or hours, rather than days or weeks.

4.1 Algorithm Analysis and
Optimization

In ORINOCO, the best algorithm to
implement the specification is selected from
the most appropriate candidate algorithms.
“Power Bottlenecks” of each algorithm are
identified and the algorithm optimized by
algorithm transformation, as appropriate.

Analysis of the power consumption for a
given algorithmic specification proceeds
according to the flow shown in figure 4. The
C/SystemC specification must first undergo
compilation and instrumentation.
Instrumentation is the process of inserting
the profiling statements necessary to derive
the switching activity at each defined
operation in the source code. The algorithms
are then executed, and the resulting activity
profile data is used to annotate a suitable

System Level Low Power Design Flow
With ORINOCO

Power Analysis
and Optimization

ok?

- RT-level design
synthesis

gain: 75%
time: minutes

gain: 30%
time: minutes

ok?

gain: 15%
time: days

design backend

final analysis

C/SystemC
Algorithm

System-Level Design For Lower Power Page 4 of 7

design representation, a control data flow
(CDF) graph. Any number of power
estimations may then be performed to
determine the power characteristics of any
given configuration.

 Source Code

Application Data

CDF Information

Results

Compilation
CDF extraction
Instrumentation

Executable

Algorithm
Execution

Estimation

CDF Generation/
Annotation

Activity profile

Power models

Figure 4: Algorithm Power Estimation Using
a Control Data Flow Graph

A power-optimized architecture can be
derived in ORINOCO from this graph without
executing a complete synthesis, utilizing
power models created for each RT-level
component. These models depend on the
input data, component characteristics such
as bit width and architecture, and the
underlying technology or cell library. The
power models may be generated
automatically for a given technology. Using
the switching activity and the power models,
the power consumption of a component can
be estimated.

Algorithm transformation techniques in
ORINOCO include operator substitutions, and
code transformations. Code transformations
include transformations on conditional
statements, loop splitting, and loop unrolling.
Control statement reduction has a significant
impact on the power consumption, and such
transformations are often best effected via
loop transformations. An example of the
power reduction effects of loop unrolling and
common case optimization techniques is
shown in figure 5. The results show the
power consumption for the original algorithm
(matrix_simple), the algorithm optimized

with loop unrolling (matrix_unrolled), and
the matrix optimized by common case
techniques, (matrix_ccase_opt).

// loop unrolling
void matrix_unrolled(int a[16], int b[16], int c[16])
{

// column * row
int x, y;
for (y = 0; y < 4; y++)
{

for (x = 0; x < 4; x++)
{

int sum = 0;
sum = sum + me(a,x,0) * me(b,0,y);
…

int idx;
idx = x+y*4;
c[idx] = sum;

}
}

}

// common case (zero) - optimized
void matrix_ccase_opt(int a[16], int b[16], int c[16]
)
{

// column * row
int x, y;
for (y = 0; y < 4; y++)
{

for (x = 0; x < 4; x++)
{

int sum = 0;
int tmp, tmp2;

// Common case optimization to save a
// memory access and a multiplication, if
// a zero value is encountered.
//
tmp = me(b,0,y);
if (tmp > 0)
{

sum = sum + me(a,x,0) * tmp;
}
tmp = me(b,1,y);
if (tmp > 0)
{

sum = sum + me(a,x,1) * tmp;
}

 ...

Figure 5: ORINOCO Power Analysis Before
and After Loop Unrolling

An example of how the best algorithm can be
selected in ORINOCO using the initial
specification and the input data stream is
shown in figure 6. The benchmark consists of
two JPEG decompression algorithms, one in
which very little data is lost during
compression, and one that is faster but more
lossy. The benchmark compares the energy
consumption of the two algorithms resulting
from the processing of two different input
streams: a high quality stream – with a low
compression ratio – consisting of 99% of the
original data, and a fast stream consisting of
30% of the original data.

It can be seen that the fast (lossy) algorithm
use less power consumption, while the
accurate algorithm consumes more power
when processing the fast stream. Analysis of
such algorithms without ORINOCO would
have been messy—to say the least, and
would have taken weeks—as opposed to
minutes with ORINOCO.

System-Level Design For Lower Power Page 5 of 7

Figure 6: Energy Consumption of Two JPEG
Algorithms in ORINOCO

4.2 Architecture Analysis and
Optimization

Algorithmic estimation and optimization are
followed in ORINOCO by the creation of a
power-optimal architecture. This includes
memory architecture, scheduling, number
and types of resources, how those resources
are shared and bound to the algorithm
operators, type of data encoding, controller
design, floor plan and clock tree design.

The optimal power-consuming algorithm is
transformed into hardware. This trans-
formation consists of a number of complex
decisions involving scheduling, allocation and
binding. Scheduling determines the clock
cycle during which an operation is executed;
allocation determines the type and the
number of resources to be used; binding is
the mapping of operations onto resources
determined during allocation. Furthermore,
resources can be distinguished not only by
their function, but also by their internal
architecture. For instance, an adder can be
realized as a carry-ripple or a carry-select
adder.

Figure 7 shows a scheduling graph in
ORINOCO. In this graph, the designer is able
to see for a particular process, the functional
units used in an implementation (multipliers,
adders and subtractors in this case), the
cycles in which the units are active—
including multi-cycle use of the multipliers—
and the relationships between these units.

Figure 7. A Scheduling Graph in ORINOCO

This is clearly a large design space with
multiple degrees of freedom, each with its
own trade-offs and power consumption
characteristics. Bounding this space is
effected by decomposing the specification
into a series of function calls, each of which
may be seen as pure function views of
subtasks in a complex computation.

Memories are utilized for both intermediate
information storage and inter-block
communication. Thus, they have a significant
effect on chip power consumption, and
sometimes account for the majority of it – up
to 80% in some SOC designs. Consequently,
optimizing memory hierarchy and structure
as early as possible is a major step in
meeting power consumption constraints.

Common techniques for optimizing memory
access and memory system performance
include basic loop transformations such as
loop interchange, loop tiling, and loop
unrolling; array contraction; scalar
replacement; and code co-location. Most of
these techniques can be affected simply by
rewriting code.

Selection of the best optimizations is
facilitated by the visual display of power
analysis results, as shown in figure 8. The
graphic shows an analysis of the power
consumption of algorithms used in a digital
signal processing application – a Wavelet
(signal compression) transform. The bar

AAccccuurraattee FFaasstt AAllggoorriitthhmm PPiiccttuurree QQuuaalliittyy

338888..44 440022..77

228800..55 227700..99

System-Level Design For Lower Power Page 6 of 7

graph shows the power consumed, while the
memory access traces show memory usage.
It can be seen that intra-array optimization
reduces power consumption from 19.2µWs to
12.1µWs, or 37%. Inter-array optimization –
memory size reduction by mapping arrays
onto the same addresses of another array –
reduces the consumption by another 1.2µWs,
yielding a total 43% reduction.

Figure 8: ORINOCO Power Analysis of A
Wavelet Transform Mapped To Different
Memories

5. Who Are ORINOCO’S Users?

The above discussion leaves open the
question as to what sort of designer would
actually use a product like ORINOCO that
gives power analysis— analysis of what is
very much a physical effect--at the ESL,
where physical effects have traditionally been
an afterthought at best.

The answer really depends on the nature of
the organization into which ORINOCO is
introduced. Is there a desire to change the
situation to which we referred at the end of
the last paragraph or, rather, a desire to
cope with it.

To see the situation more starkly, consider
that one sure way to start a brawl at the
holiday party of an electronics party is to get
some “back end”, i.e., implementation,
engineers together with “front end”, i.e.,
system-level architects and ask the former
group what they think about the designs that
are “thrown over the wall”. The back end
people will typically roll out a list of horror

stories about designs that architects have
given them that would require a rollback of
the laws of nature to implement. The front
end people will mumble something about
“synthesis jocks”, and note that their
mathematically elegant algorithms are the
“secret sauce” that makes the finished
products so successful. The discussion can
only go downhill from there.

There are several points that have to drawn
out of this fanciful inter-group “discussion”.
First, system-level designers typically do not
understand physical effects. They are often
trained as mathematicians or pure computer
scientists (as opposed to those CS people
who get their hands dirty in HW-related
issues). For such people providing
information regarding the physical
implications, e.g., the power usage, of their
designs may be not very useful—even a
child’s text in Hindi is incomprehensible to
someone who does know Hindi.

Moreover, even if system level designers do
have the background and interest in
understanding, for example, the power
implications of their algorithms, it has not
traditionally been very easy for them to
discern those implications. Before an
implementation of the algorithm exists, they
can at best guess based on experience or use
crude spreadsheet-based techniques. After
implementation, on the other hand, physical
information about that implementation is
usually so detailed that it is unrealistic to
think that many higher-level designers could
understand it.

On the other side of the front-end/back-end
divide, it should be pointed out that the RTL
designers who are given algorithms for
implementation generally are neither expert
in either algorithm development or in lower-
level physical analysis. Thus, their challenge
is to take a complex algorithm, understand
it, and convert it into an RTL design keeping
things like a power budget clearly in mind.
Insofar as they can be given tools that help
them analyze the algorithms they have been
given and help them explore, for example,
the power ramifications of various
architectures, the better.

10.9 µWs12.1 19.2

iinnttrraa aarrrraayy ooppttiimmiizzaattiioonn iinntteerr aarrrraayy ooppttiimmiizzaattiioonn

System-Level Design For Lower Power Page 7 of 7

This leads us to answer the question as to
whom ORINOCO is targeted. In organizations
where there is a desire to have system-level
designers take a bigger role in vetting their
algorithmic designs with regard to power
consumption, ORINOCO can be of great use,
since it can provide power-related
information in a easy to understand manner
to algorithm developers. It still requires such
designers to have the ability and desire to
interpret the information it provides, but it
avoids deluging the designer with counter-
productive reams of lower-level information.

On the other hand, in organizations where
system-level designers will remain agnostic
with regard to physics, ORINOCO can be
productively used by the consumers of the
C/SystemC algorithms, rather than the
producers. In such cases, the detailed
reports provided by ORINOCO can be used to
both analyze the structure of the algorithms
to be implemented and to explore various
energy efficient architectures of those
algorithms and to request changes to those
algorithms when what has been designed
cannot be implemented efficiently from a
power standpoint.

Of course, there will be mixtures of these
two organizations. In the ideal, ORINOCO
can be used both system-level designers and
the designers at the front end of the design
flow who consume the system-level design.
Indeed, in the best case, ORINOCO can serve
as a method of communication between the
two groups to make sure that what is
implemented has been properly analyzed
with regard to power consumption.

Conclusion

An ESL design methodology supported by the
appropriate automation tools is the fastest
and most effective method of designing
complex chips for lower power. Moreover, it
significantly reduces the risk of not meeting
(often stringent) power constraints by the
early identification of function-level hot
spots, and enabling the analysis and
selection of alternative solutions. ORINOCO,

which was introduced in this paper, is
ChipVision’s implementation of such an ESL
methodology.

Dr. Stanley Krolikoski is CEO of ChipVision
Design Systems.

Dr. Wolfgang Nebel is Chairman, Chief
Technology Advisor and Co-Founder,
ChipVision Design Systems and Professor of
Computer Engineering at Oldenburg
University.

Dr. Laila Kabous is Director of Marketing with
ChipVision Design Systems

	Low-Power Analysis Using ORINOCO®
	
	
	
	By Dr. Stanley J. Krolikoski, Dr. Wolfgang Nebel and Dr. Laila Kabous

	1. Introduction
	2. Where ORINOCO fits in the design flow
	3. Power Analysis Without Orinoco
	
	
	Figure 1: Power Analysis Without ORINOCO

	4.	ORINOCO- The ESL Power Analysis Solution
	
	
	Figure 2: System-Level Low Power Design Flow
	Figure 3: Design of Power-Optimal Algorithms and Architectures

	4.1	Algorithm Analysis and Optimization
	Figure 4: Algorithm Power Estimation Using a Control Data Flow Graph
	Figure 5: ORINOCO Power Analysis Before and After Loop Unrolling
	Figure 6: Energy Consumption of Two JPEG Algorithms in ORINOCO
	Figure 8: ORINOCO Power Analysis of A Wavelet Transform Mapped To Different Memories

	5.	Who Are ORINOCO’S Users?
	Conclusion

