Integrity Must Be Integral *Daily Life of a SI Guy in EDA*

Li-Pen Yuan Synopsys Inc.

> Your Design Partner

Outline

- Long-term impacts of daily decisions
- Considerations involved in solving a problem with right efforts at the right place
- Case studies
 - Crosstalk
 - Power
 - Power supply noise
- A glance into the future

Physical Problem Solving in EDA

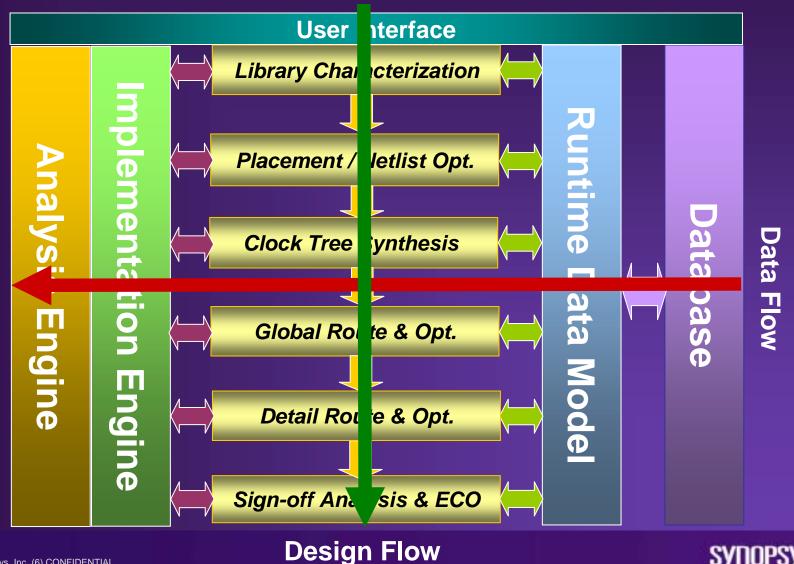
- A physical phenomenon gets noticed due to its impact on performance, cost, competitiveness, or reliability
- "How serious is this problem on MY design?"
- "Well it's a concern but not too bad. How can we fix it after design is complete?"
- "3,000 violations? It's going to take forever! Can't you prevent it?"
 - "Of course everything important before still needs to be taken care of."
 - "Oh, by the way I can't afford tape-out delay. Do it smart and fast."

Pressure on EDA is ON

Software Infrastructure

- Database
- Runtime data model
- User interface
- Flow
 - Library
 - Analysis engines
 - Implementation engines
 - Sign-off tool
 - Trade-off's
 - Last touches ECO

Now do the above 4 times! Timing Crosstalk Power Voltage Drop & Reliability


"Did I tell you the process variation problem that's been bothering me?"

"It would be really nice if you can somehow analyze chip performance including the core, I/O, packaging and board all together."

© 2002 Synopsys, Inc. (5) CONFIDENTIAL

Physical Implementation System

© 2002 Synopsys, Inc. (6) CONFIDENTIAL

SYNOPSYS'

Outline

- Long-term impacts of daily decisions
- Considerations involved in solving a problem with right efforts at the right place
- Case studies
 - Crosstalk
 - Power
 - Power supply noise
- A glance into the future

Different Effort Levels: Point to Flow

- Some problems can be solved with incremental changes to existing system
 - HCE, Signal EM, Power
- Some problems can be addressed by making information available
 - Timing, Crosstalk, Power
- Some problems challenge fundamentals of a software system
 - Power (multi-Vdd, multi-mode)
- Some problems challenge fundamentals of design flow
 - Crosstalk, Resistive Shielding

Uneven Effort Levels

Case 1: Implementation Engines

- Signal EM, HCE
- Case 2: Analysis Engines

Voltage drop

Database Characteristics

Representation by

- View (timing, power, SI)
- Abstraction level (transistor, cell, RTL)
- Hierarchy
- Object Relationship and Maintenance
- Update mechanism
 - Incremental
 - Batch
- Flexibility
 - In-memory vs. disk I/O
 - Query

Runtime Data Model

- Mapping mechanism with database
- Capacity vs. reference to database
- Native vs. subscription based costing
- Flow representation and interface between sub-systems

User Interface

- Mapping mechanism with database
- Text vs. graphics
- Scripting vs. forms
- Details vs. speed
- Ease-to-query vs. capacity
- Editing, design change and legalization

Outline

- Long-term impacts of daily decisions
- Considerations involved in solving a problem with right efforts at the right place
- Case studies
 - Crosstalk
 - Power
 - Power supply noise
- A glance into the future

Crosstalk: Why is it so Hard?

Introduces spatial correlation among signals

- Routing pattern
- Driving strength
- Clock domain
- Timing window
- Logic correlation

Design complexity goes from O(N) to O(N^2)

- Necessitates explicit consideration of nonlinear behavior of digital circuits
 - Waveform vs. ramp approximation
 - Noise propagation

Crosstalk: Why is it so Hard? (cont'd)

- Adds complexities to hierarchical design flow
 - Macro model needs to carry more attributes
 - Physical: crosstalk model parameters of boundary nets
 - Timing: uncertainty due to crosstalk
 - Additional physical and timing constraints
- Pessimism removal is challenging yet must be done
 - Logic correlation: deterministic vs. probabilistic
 - Timing window: accuracy vs. data volume

Crosstalk-aware Design Flow

Crosstalk Prevention

Placement based prevention through slew balancing and congestion removal
GR/TA prevention through routing density, length, and layer control
Routing based prevention for clock

<u>Crosstalk Fixing</u>
 Topology based optimization considering crosstalk

<u>Crosstalk ECO</u>
Sign-off tool generates constraints and ECO deck

© 2002 Synopsys, Inc. (16) CONFIDENTIAL

* Optional step when HFN is not done in PC

Crosstalk: Status

Flow is there but a lot of work remain to be done

- No single step can solve crosstalk alone. Divideand-conquer is key
- Balance aggressiveness in crosstalk prevention / correction with timing, power, and area
- Balance sophistication of crosstalk model with runtime, memory, and accuracy of input parameters
- Correlation with sign-off tool needs to be pursued but not too hard
- Efficient ECO flow is critical to closure

- Can power be analyzed rather than measured?
 - Will there ever be power "sign-off?"
- Implications of power management techniques on power analysis
- Power management has associated costs

Power Analysis Status

- Power sign-off requires efficient ways of finding
 - Average power
 - Worst-case power
 - Worst sustainable power
- Fact
 - Power is highly dependent on input pattern statistics
 - Input patterns are usually highly correlated and vary with time
- Result
 - Average power vary with time
 - Algorithmic worst-case power rejected for excessive pessimism

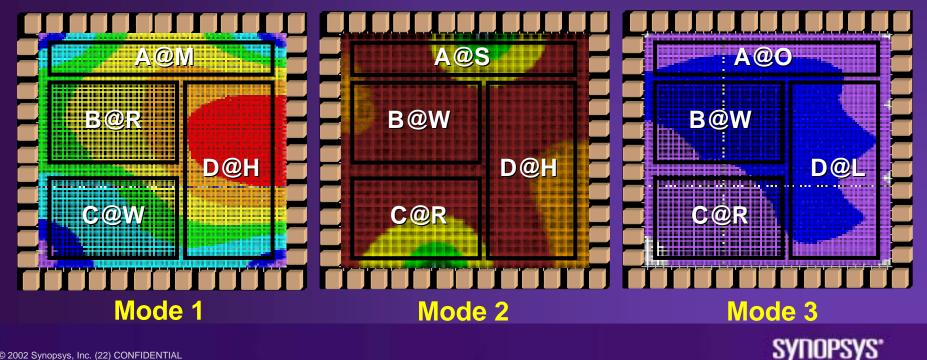
Power Management Status

 Continuous push towards deterministic reduction of dynamic and leakage power

- Dynamic power reduction
 - Multi-voltage
 - Dynamic voltage scaling
 - Clock gating
- Leakage power reduction
 - Multi-Vt
 - Power gating
 - Back bias

 Create distinctive power consumption "modes" in circuit operation

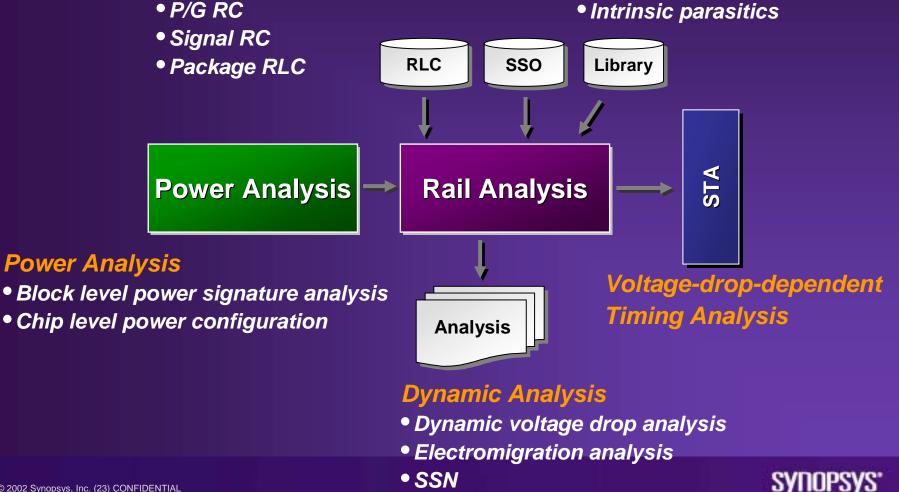
Power Management vs. Analysis


Power "signature" analysis at block level

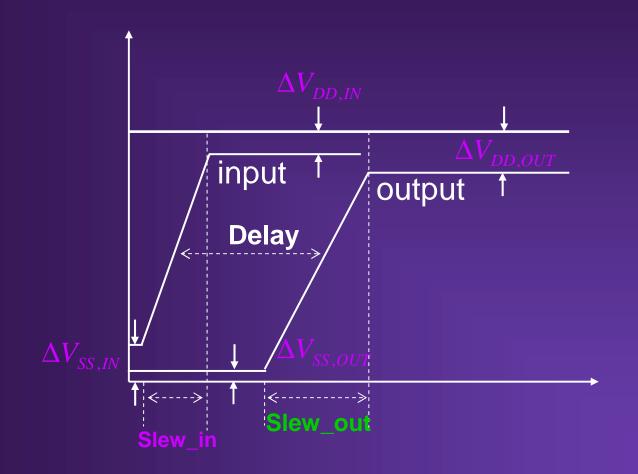
- Capture deterministic "mode" behavior
- Additional sensitivity analysis to model other dominant signals
- Statistical or probabilistic approaches for the rest of signals
- Can be easily extended to power macro model
- Power "configuration" at chip level
 - Capture architecture impact on power consumption
 - Capture system operation in sequence of configuration switches

Power Management is not Free

- Lower supply voltage lowers noise margin
- Multi-mode control of circuit function worsens gradients of current distribution, leading to Ldi/dt noise


© 2002 Synopsys, Inc. (22) CONFIDENTIAL

Power Supply Noise Analysis


Parasitic Extraction

Library Characterization

- Voltage-dependent timing models
- Current waveforms
- Intrinsic parasitics

Voltage-Dependent Timing Models

 $(Delay, Slew_out) = f(Slew_in, C_L, \Delta V_{DD, IN}, \Delta V_{SS, IN}, \Delta V_{DD, OUT}, \Delta V_{SS, OUT})$

SYNOPSYS'

© 2002 Synopsys, Inc. (24) CONFIDENTIAL

Power Supply Noise

Challenges how we characterize library

- Explosive simulation complexity needs to be dealt with seriously
- Challenges how we analyze power
 - Systematic, hierarchical approach is needed
- Challenges how we analyze timing
 - Consider dynamic voltage drop in STA
- Challenges how we partition the problem
 - SSN needs to be considered in noise analysis
- Challenges tool capacity and speed
 - Is overnight run on a 20M gate design possible?

Outline

- Long-term impacts of daily decisions
- Considerations involved in solving a problem with right efforts at the right place
- Case studies
 - Crosstalk
 - Power
 - Power supply noise
- A glance into the future

A Glance into the Future

- Tuning / Overhauling of existing software infrastructure will continue
- Analysis engines with high accuracy and efficiency will become a must and bigger a challenge
- Catering to all care-about's in implementation engines is a tough balance act
- Understand analog behavior to continue the path of digital designs
 - Library characterization
 - Delay calculation
 - Dynamic voltage drop effects

A Glance into the Future (cont'd)

Crosstalk flow needs to be improved

- Convergence
- Pessimism removal
- Closure
- Approach power analysis from architectural view
- Power supply noise will get more mind- and timeshare
- Understand limitation of automation
 - Intuitive interface to collect design-specific knowledge avoids over- and under-optimization and excessive runtime

