
Code Generation from a Single Source Structural Specification

 Claus Schneider, Wilfried Gänsheimer, Erich Schwenk
 Micronas GmbH
 Frankenthalerstr. 2
 81539 Munich, Germany
 <first>.<last>@micronas.com

ABSTRACT
A method and a tool to automatically derive top-level
hardware description, low-level driver software and
documentation out of a single source structural
specification is presented. In contrast to system-level
design tools this approach focuses on structural properties
like interconnect, hierarchy and control/status registers
instead of refining a functional specification. A table-based
specification format was chosen to enable efficient data
entry and review. Due to automatic code generation
consistency between specification and design is guaranteed
and error-prone manual transformations can be avoided.
This paper focuses on specification and hardware
generation.

Keywords
Single Source, Structural Specification, Code Generation,
Table, Spreadsheet

1 INTRODUCTION

System-level design is a highly interactive process. A huge
amount of experience is needed and many trade-offs have
to be made during design space exploration. Therefore, it is
extremely difficult to automate this process, and most of
the refinement steps from specification to design have to be
done manually. Depending on the purpose of a model
different languages may be used. In reality an executable
specification is only available for parts of the design. These
models were designed to perform algorithm evaluation and
may serve as reference models for verification, but in most
cases they are not suitable for direct refinement to a design
realization. In addition, initialization is done differently in
the abstract model than in the concrete design, and IO and
test structures are not covered at all.

Due to these constraints we decided to focus on structural
properties like interconnect, hierarchy and control/status
registers instead of refining a complete functional
specification.

In this approach, functional blocks are treated as black
boxes for top-level integration. The control and status
registers are separated from the functional block to enable
different address mappings and integration into different
chip architectures (e.g. parallel control bus vs. serial control

channels). Hierarchy information is separated from
interconnect specification to enable easy hierarchy changes
and flat (source to sink) interconnect analysis across
hierarchies. Another structural issue is the multiplexing of a
huge number of internal signals to a limited number of
external IO pads.

A tabular specification format was chosen for top-level
interconnectivity, hierarchy, IO multiplexing and
control/status registers. The major benefit of this approach
is to maintain a single source of specification information.
All code and documentation that can be directly derived
from the specification is generated automatically to avoid
any error-prone manual interaction and to guarantee for
consistency between specification, documentation and
design.

2 RELATED WORK

The proposed table-based structural specification is closely
related to traditional text-based or schematic design entry
but is intended as a method to bridge the gap between
concept and design. In the first step the concept engineering
captures the register specification and basic architecture
definition (major control and data flow). Afterwards the
specification is extended by implementation details to be
ready for automatic code generation.

Concept engineers prefer spreadsheets whereas designers
often stick to their favorite text or schematic editor to
capture the design. For this reason, the major issues related
to these methods will be discussed briefly. While text-based
design entry requires focus on syntax and formatting in
schematic entry much time is spent on doing layout of
blocks and wires. Both methods require a significant
amount of effort, which is not necessary to reach the goal –
a compact specification of logical interconnect. On one
hand block diagrams are very useful to understand and to
discuss structural design issues but on the other hand they
are very time consuming to create and to maintain. A
solution to this problem is the creation of HDL code out of
a compact logical interconnectivity specification and the
visualization with generated block diagrams.

Meanwhile, sophisticated debug tools [1] generate
acceptable hierarchical block diagrams and allow analysis

of fan-in and fan-out cones of signals across hierarchies.
Unfortunately, the analysis capabilities are restricted to
debugging and tracing of single signals. They are neither
intended to a systematic review of all top-level
interconnections nor for design entry and code generation.

The table-based capture of structural specification
information fills this gap between concept and design. It
provides a means for a compact interconnect specification
without having to deal with HDL syntax nor schematic
layout issues. The HDL code is generated automatically
according to predefined coding guidelines and naming
styles. Schematics can be generated dynamically on
demand by commercial tools.

The hierarchy that is required by text and schematic entry
to handle the complexity is kept separate from the
interconnect definition. Filter capabilities in spreadsheets
instead of hierarchy can be used to deal with complexity.
By keeping hierarchy separate from interconnect it can be
changed easily and signals can be traced at a flat top-level
from source to all sinks across hierarchies. While text and
schematics are block-oriented the table provides also an
interconnect-oriented view.

A commercial interface-based design tool [2] provides a
table-based interconnect entry but there is no separation of
interconnect and hierarchy nor there is dedicated support
for register and IO multiplex specification. Especially the
support for register, IO, hierarchy and interconnect
specification in a single source for automatic generation of
derived code and documentation is seen as the key benefit
of the proposed tabular specification.

3 MAPPING OF SPECIFICATION OBJECTS TO
DESIGN INSTANCES

The single source structural specification consists of four
tables (Interconnect, Hierarchy, IO, Register). Out of these
tables, top-level hardware structure, HW/SW interface
(register structure + low-level driver software) and
documentation are generated.

3.1 Software and Documentation
The lowest layer of the driver software is generated out of
the register sheet only. The purpose of this layer is to hide
the mapping of logical control/status parameters to physical
bit slices of one or several registers. The higher software
layers can access these control parameters without having
to care about address space mapping and masking
operations. For documentation purposes various tables are
generated that list registers ordered by address,
alphabetically or in functional order. In addition an IO
mapping table is generated to summarize the IO multiplex
options.
This paper focuses on the generation of the top-level
interconnectivity. The basic architecture shown in Figure 1
will be taken to explain the method.

3.2 Basic Target Architecture
Typically, our chips are structured in the following way:
• CHIP: Pad frame containing the pad instances
• TOP: IO control Cells (IOC) that perform

multiplexing, grouped into N/S/W/E for layout
purposes

• CORE: Subsystems consisting of functional blocks,
registers and interface blocks. For mixed VHDL/
Verilog designs wrapper blocks are necessary.

Figure 1: Basic Target Architecture

Control-oriented designs may consist of an internal CPU
and a micro controller, both with their own bus. Designs for
signal processing may only consist of a dedicated data path
and a serial programming interface (e.g. I2C). A test
controller (TC) and a chain connecting all IOCs (e.g.
boundary scan or NAND tree) denote the presence of test
logic.
Not all connections have to be specified explicitly in the
interconnect table for the generation of the top-level
interconnectivity. Connections are automatically generated
between core signals and IOC blocks by referencing signals
from the interconnect table inside the IO table.
An example is the connection between Fm and IOC (green).
Additionally, so-called implicit signals are generated by
assignment of a register to a functional block in the register
table, e.g. the connection between Rm and Fm (yellow). All
other connections have to be specified explicitly (orange).
User defined macros, e.g. for signal bundles, are supported
to increase the abstraction level of the specification. Further
reduction of typing can be achieved for regular interconnect
structures, like boundary scan chains, by the usage of
regular expression matching for instance names (red).
These features will be described in more detail in the
following sections.
All interconnections are described directly between
functional blocks, registers, IO cells and pads. These blocks
are treated as black boxes for top-level integration. The
methodology can be applied in a hierarchical manner
because there is no assumption on the granularity of the
leaf blocks. A module designer may treat adders, FIFOs or
FSMs as leaf blocks. For chip-level integration these
internally developed modules or intellectual property
blocks from third parties may be treated as leaf blocks
(black box). Intermediate hierarchies, e.g. CHIP, TOP,
CORE and subsystems, or simulator dependent wrapper

frames between VHDL and Verilog are not considered for
the interconnectivity specification. The hierarchy is
specified in a separate table and used only for HDL code
generation. While hierarchy is required for text or
schematic capture it is replaced by filter capabilities of
spreadsheets. Therefore, several attributes, assigned to the
signals, can be used to focus on a selected aspect of the
design. Besides a bundle name to group signals a class
attribute is provided to select between data, control, test,
clock or reset signals. This capability is especially useful
for systematic reviews: All signals that belong to a certain
category, e.g. test, can be traced from source to all
destinations across all hierarchies. This can be done in a
systematic manner rather than randomly one signal after
another in a schematic tool.

3.3 Interconnect
There are four different types of interconnect specification
objects that directly correspond to VHDL or Verilog design
objects. A signal, in Verilog called net, is a connection
between leaf blocks that has at least one driver (source) and
at least one load (destination). A port describes an interface
of the top-level and can be of mode in, out or inout.
Constants are used to parameterize instances. Generics
provide a means to pass constant parameters to leaf
modules. The basic source of interconnect specification is
the interconnect table, a list of interconnect objects. An
example is shown in Figure 2.
The first row holds the tags identify the columns. This
allows for swapping or inserting columns without the need
to modify the table parser. There are two additional
columns that are not shown in Figure 2: There is a
description text column and an ignore column that can be
used to mark a row as a comment line. A mode attribute
distinguishes between different objects: Signal, port,

::gen ::bundle ::class ::clock ::type ::high ::low ::mode ::name ::out ::in
RGB Data CLKF logic 7 0 SIG_R MODA/R MODC/R
RGB Data CLKF logic 7 0 SIG_G MODA/G_LO(3:0)=(3:0),

MODB/G_HI(3:0)=(7:4)
MODC/G(5:1)=(7:3),
MODD/G(7:5)=(2:0),
MODE/G=(0)

RGB Data CLKF resolved 7 0 SIG_B MODA/B(7:0), MODB/B(7:0) MODC/B(7:0)
$i (1..147),
/IOC_(\w+)_$i/

NAND_TREE Test TCK logic NAND_OUT_$i IOC_$1_$i/NAND_OUT IOC_$1_{$i+1}/NAND_IN

/IOC_(\w*O)_(\d+)/ PAD_CTRL IO logic PAD_DO_$2 IOC_$1_$2/DO PAD_$2/DO
MH StdIF $1 YCrCb_$2_$3_$4 $5 $6
MD $5_$6 StdIF C $1 logic $5_AP $5/AP $6/AP
MD $5_$6 StdIF C $1 logic $5_HSYNC $5/HSYNC $6/HSYNC
MD $5_$6 StdIF C $1 logic $5_VSYNC $5/VSYNC $6/VSYNC
MD $5_$6 StdIF D $1 logic $4 0 $5_CB $5/CB($4:0) $6/CB($4:0)
MD $5_$6 StdIF D $1 logic $3 0 $5_CR $5/CR($3:0) $6/CR($3:0)
MD $5_$6 StdIF D $1 logic $2 0 $5_Y $5/Y($2:0) $6/Y($2:0)
MX StdIF CLKD YCrCb_8_7_7 BLE CST

integer C 6 FIFO/DEPTH
/(IOC_\w+_\d+)/ TOP IF integer G WIDTH 8 $1/WIDTH

TOP IF CLKF logic WIDTH-1 0 I DATA_IN MODC/Y

Figure 2: Interconnectivity Table

generic and constant. The name of each interconnect object
has to be unique for the flat interconnect specification.
Objects are further described by a type and range (for
vector types), bundle name and class attribute for sorting
and filtering purposes and an associated clock for signals
and ports. At the beginning of the table different examples
for signal definitions are shown. In the single bus example
the width of the ports can be omitted when identical to the
signal width. The split bus example shows a signal where
one bit slice is driven from module A while the second slice
is driven from module B. At the destinations the signal
branches to modules C, D and E. For this connection the
bits 7 down to 3 of the signal are mapped to bits 5 through
1 of the port G of module C. Tri-state bus connections can
also be specified. The usage of regular expression matching
and a counter loop for a very compact specification of a
regular interconnectivity structure is shown for a NAND
tree.
The algorithm to generate the regular interconnectivity
structure is shown in Figure 3 in PERL syntax.
foreach my $i (1..147) {
 foreach $inst (%inst_hash) {

In the hierarchy table regular expressions for instance
matching can be used for grouping of instances. This
feature is shown for pads and IO control cells. In the PADS
hierarchy all instances matching “PAD_” followed by a
number between zero and 147 are grouped. These instances
were generated from the IO table described in the next
section. The IO table also defines the pad type, i.e. the
entity name. To avoid duplicated information and to enable
grouping by regular expression matching the entity table
cell for pad instances is left empty. The generator tool gets
the correct entity name for each pad instance from the IO
table to expand the hierarchy table. A similar mechanism
applies to the IO control cells. Here, the tool automatically
generates an entity name according to the given naming
rules.

 if ($inst =~ /IOC_(\w_\w+)_$i/) {
 &add_conn(NAND_OUT_$i,
 IOC_$1_$i/NAND_OUT,
 IOC_$1_{$i+1}/NAND_IN,)
 }
 }
}

Figure 3: Regular Expression Matching

For each instance matching the regular expression within
the specified loop a connection is added. The variables $1
(matched part of instance name), $i (loop counter) and any
expression like {$i+1} will be evaluated and replaced by
their actual value. For simplification the evaluation is not
shown in Figure 3. After the NAND Tree an example for
multiple point-to-point connections of the data out ports
between all IO control cells and pad cells is shown.

For standardized interfaces like micro controller busses or
data path connections macros can be defined to reduce
typing effort and support abstraction. In Figure 2 a data
path example is shown consisting of control signals (AP,
HSYNC, VSYNC) and data signals (CR, CB, Y). The

clock parameter ($1) of the macro header (MH) is just
copied to all signals of the bundle in the macro definition
(MD). The data widths ($2, $3, $4), the source ($5) and
destination ($6) blocks will be replaced in the macro
execution (MX) by the actual values.

Finally, a constant definition to parameterize a FIFO depth,
a generic definition to parameterize the width of IO cells
and an input port whose width depends on the generic
parameter are shown in Figure 2.

3.4 Hierarchy
Interconnectivity and hierarchy are separated to enable flat
analysis of top-level interconnectivity. For each level of
hierarchy all instances are listed with a reference to the
parent hierarchy. The most important instance attributes
like entity name, configuration name and language (VHDL
or Verilog) are specified, Figure 4.

Another feature of the hierarchy table is the specification of
design variants. A special column (::variant) in the table is
reserved for a list of variant names for each instance. Using
this feature the PROBE module can be included in the
FPGA variant for debugging purposes and can be dropped
in the final Chip (Default) or Emulation version. We also
used variants to replace various data path modules by
bypass modules to reduce the gate count for the FPGA
prototype. In this scenario modules that were not relevant
for some tests were bypassed.

::gen ::variants ::parent ::inst ::lang ::entity ::config
Default TESTBENCH MYCHIP VHDL MYCHIP MYCHIP_RTL_CONF
FPGA TESTBENCH PROBE VHDL PROBE PROBE_RTL_CONF
Default MYCHIP PADS VHDL PADS PADS_RTL_CONF
Default MYCHIP IO_SOUTH VHDL IO_SOUTH IO_SOUTH_RTL_CONF
Default MYCHIP TOP VHDL TOP TOP_RTL_CONF

$i (1..147),
/PAD_$i/

Default PADS PAD_$i VHDL ${::entity}_structural_conf

$i (1..42),
/IOC_(\w_\w+)_$i/

Default IO_SOUTH IOC_$1_$i VHDL ${::entity}_RTL_CONF

Figure 4: Hierarchy Table

3.5 IO Structure
Most of the designs are pin-limited and require IO
multiplexing in mission mode as well as in test mode.
While multiplexing options can be described very
efficiently in tabular format the manual HDL
implementation of all interconnections is very inflexible,
time consuming and error-prone. The automation of this
task is based on predefined IO Control cells (IOC).
Different types of interfaces (e.g. GPIO, DRAM) require
different IOCs.

An example for an IOC is shown in Figure 5.

EN

DO

DI

EN(0..n)
PAD

SEL(0..n)

DI

CHAIN_O

from other pads:

PD(0..n)

PU(0..n) PU

PD

DO(0..n)
CLK(0..n)

CHAIN_I

EN

DO

DI

PU

PD

PAD_<#>

IOC_<FUNC>_<CTRL>_<#>

IMUX_<sig>

connected
to select
signals
specified in
SEL row of
::muxopt

DI
columns SEL(0..n)
to core:
signal name
specified in
:: muxopt
column

from core:
signal name
specified in
:: muxopt
column

same signal name
appears in different
::muxopt columns

DI(0..n)

from previous IOC

to next IOC

BSC
or

NAND
Tree

Figure 5: IO Control Cell

The IOC contains multiplexing logic, output registers and it
may contain also test logic like a NAND tree or a boundary
scan chain. Regular interconnect structures like the NAND
tree and the connections between IOC and pad can be
explicitly described in the interconnect sheet using regular
expression matching and loops. All connections of core
signals to the IOC multiplexer inputs have to be described
in the IO table. A small example of an IO table is shown in
Figure 6. It defines an input pad TM, two supply pads
(VDD, VSS), an IO pad (GPIO) and another IO pad with
pull up (PCK). Each row of the table describes one pad, its

attributes, the IO control cell instance and the IO
multiplexing.
::pad ::type ::iocell ::port ::name ::muxopt ::muxopt

SEL PAD IOSEL_0 IOSEL_T
1 WC3I80 IOC_G_I DI TM TESTMODE TESTMODE
2 WVV3IO VDD
3 WVV0IO VSS
4 WC3B60 IOC_R_IO DI,

DO,
EN

GPIO GPIN,
GPOUT,
GPEN

SCAN_IN

5 WC3BC0 IOC_R_IOU DI,
DO,
EN,
PU

PCK ,
PCK,
PCK_EN

TCK,
,
,
'1'

Figure 6: IO Table

For the multiplexing a list of ports (::port) of the IOC is
assigned to multiple lists of core signals (::muxopt). The
direction of the pad is determined by the ports of the IOC,
that are used in this multiplex option: Data In (DI), Data
Out (DO), Output Enable (EN). In addition, Pull Up (PU)
and Pull Down (PD) resistors in the pad can be controlled.
A special row defines the control signals of the select
inputs (SEL) of all IO multiplexers for each multiplex
option (e.g. IOSEL_0, IOSEL_T). These select signals have
to be explicitly defined in the interconnect sheet. The
signals referenced in ::muxopt columns can be either
explicitly defined signals from the interconnect table or
implicitly defined signals that will be generated or
expanded by the tool (e.g. signals from/to register blocks).

3.6 Register
Control and status registers are separated from the
functionality of the processing units. This approach often
referred to as interface-based design [3] or separation of
synchronization and functionality [4] gives the maximum
flexibility to adapt the units to different on-chip
communication structures like control busses (e.g. µC) or
control channels (e.g. ::type = I2C). An example of the
register table is shown in Figure 7. Each row of the table
defines the bits (::b) of a control parameter and it’s
attributes. The generator supports different access modes
(::rw), auto address increment (::auto), update mechanisms
(::sync) and reset values (::init). Several control parameters
can be merged to a register by using the same sub address
(::sub). Furthermore, registers can be grouped into register
blocks (::interface). The grouping may be based on clock
domains, update domains, or logical function. The HDL
code generation works similar to the approach for the IO
control cells. Different types of predefined registers with
various generic parameters are instantiated and

::type ::sub ::interface ::block ::rw ::auto ::sync ::clock ::reset ::b ::b ::b ::b ::b ::b ::b ::b ::init ::view ::comment
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF BRT.5 BRT.4 BRT.3 BRT.2 BRT.1 BRT.0 20 Y Brightness

Adjust
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF DIGSEL 0 Select digital

or analog input
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF YUVSEL 1 Y Select YUV or

RGB input

Figure 7: Register Table

parameterized according to the register attributes defined in
the table including clock and reset signals. The control
parameters of the registers are connected to the functional
blocks (::block) that are specified in the table. These are
implicit connections and the corresponding ports at the
functional blocks are automatically added. During this
generation step parameters that are spread over multiple
registers are combined to one signal. The hierarchical
register blocks are also automatically generated. Finally,
the register table includes attributes (::view, ::comment) for
driver software and documentation generation.

4 IMPLEMENTATION

4.1 Data Model
The Micronas Interconnect Spec eXpander converter tool
(MIX) closely models the required high-level design
objects like instances, signals, IO cells and registers. Perl
provides powerful regular expression matching operators
and text processing capabilities. Design objects and other
data structures are mapped to hashes and arrays. The
relation between different design objects is shown in an
UML-like format in Figure 8.

A chip consisting of instances and signals can be seen as an
abstract class. Only a concrete variant can be generated.
Instances and signals are linked by ports. Hierarchical
blocks can be nested while leaf blocks are not further
decomposed. A register block is hierarchical, consisting of
registers. IOCs, pads and functional blocks are leafs in the
hierarchy tree. There are two types of signals: Implicit
signals are automatically generated out of the control
parameter specification of the register definition. These are
the signals between functional blocks and the bit-fields of
the control/status registers. Explicit signals are directly
specified in the interconnect sheet as plain signals or they
are expanded from macros or regular expressions.

4.2 Step 1: Read Input Description, Generate
Intermediate Data

The converter tool starts up with some basic initialization.
A set of company and project specific design guidelines
and templates are read in and added to the tool
environment. Design guidelines define standard naming
conventions (e.g. pre- and postfixes) and other rules applied
in later phases or used to check the generated data.

The input tables are checked to make sure all required
columns are available. Default values are applied to empty
cells if needed. Macro definitions and Perl match operators
are preprocessed and stored in separate intermediate hash
arrays to be applied later on.

The signal descriptions from the EXCEL tables are stored
in the hash array %conndb modeling the non-hierarchical
connection matrix CONN. The signal names are used as
hash keys. Each array element itself is another hash array
addressing the input data columns. Thus a signal and its
properties can be accessed easily by its name. A unique,
flat name space for signals is guaranteed. The signal
SIG_R from the example in Figure 2 is stored as shown in
Figure 9.

$conndb{'SIG_R'} = {

'::bundle' => 'RGB', '::class' => 'Data',

'::clock' => 'CLKF', '::type' => 'logic'

'::in' => [{'inst'=>'MODC', 'port'=>‘R’, …],

'::out' => [{'inst'=>'MODA', ’port’ => ‘R’, …],

'::descr' => ‘single bus’, …};

Figure 9: Signal Data Structure

Macro expansion helps to specify regular or repetitive
connections like standard on-chip buses very efficiently.
The CONN data structure gets extended when additional
information for a signal is defined in later stages.

For the instance specification a
similar approach is taken. A
HIER data structure keeps track
of the hierarchy information by
using tree objects. The instances
make up a hierarchical view of
the design data. The top node of
the tree equals the design top cell.
Additional instances and
connections are added according
to the specification in the IO.xls
and Regs.xls input files.

Various checks verify the
consistency of the design
hierarchy and connection matrix,
e.g. detect instances not
connected to the main hierarchy
or drivers and loads. The check
routines print out warning Figure 8: Data Model

messages and flag the parts that
conflict with the design
guidelines. Based on these
comments refinements to the input
files should be applied by the
designer. A rerun of the generator
quickly shows the effect of the
changes. A table-based approach
for protocol specification is
proposed in [5]. Even if the
applications are different, both
table-based approaches share the
same benefits. Tables are
relatively easy to read by both
humans and machines and “easy”
errors in tables can be caught by
checks based on Boolean rules.

Ports are added to the hierarchical
blocks for signals crossing
hierarchies. The resulting HIER
and CONN data structures
represent the top levels of the chip design. The data is
written to disk in an internal data format, ready to be read
in by the step 2. On demand an EXCEL workbook can be
generated for review and for documentation purposes.

Figure 8: Dataflow from Specification to Design

4.3 Step 2: Generation of HDL Files
After transfer of the dumped intermediate data to a UNIX
environment, the HDL files are generated. In case of
VHDL output the primary design units Entity, Architecture
and Configuration are derived and written. Additionally,
HDL dependent extensions or wrappers and tool specific
extensions are added and written into files.

4.4 Cross-Platform Implementation Summary
The base module MixUtils.pm provides functions for
reading and writing files in various formats and for the tool
configuration environment. It hides all operating system
details from the upper levels, see Figure 10. MixParser.pm
and MixWriter.pm correspond to step 1 and 2. Simple
scripts use the functions of these modules, hiding all
implementation details and data structures from the user.

5 APPLICATION RESULTS

The proposed methodology and the prototype tool was
successfully applied to a display processor and scaler for
LCD TV applications [6]. The design was modeled using
60 leaf modules at 7 levels of hierarchy connected with 500
explicit signals, about 250 generated register instances with
500 parameters resulting into the same number of generated
implicit signals. Further, the design consisted of 90 digital
pads with 4 functional and 2 test multiplex options each,
resulting in around 1000 generated connections between
pads IO cells and core signals. Out of 4 specification tables
more than 25000 lines of VHDL code in 78 files were
generated.

6 CONCLUSION

The fact than only a quarter of all connections were
specified explicitly and that the rest was generated
automatically, demonstrates the efficiency of the approach.
But even more important than the productivity increase is
the single source specification principle that guarantees
consistency between all generated parts: HDL code, low-
level driver software and table-based documentation.

REFERENCES
1. Sandler, S.: Expanding Debug Technology; Electronic

Engineering Design - UK, Nov. 2002; http://www.
electronicengineering.com/story/OEG20021105S000.

2. Edwards, C.: Mentor extends HDL portfolio with
interface design; EE Times UK; 2001; http://www.
electronicstimes.com/story/OEG20010309S0027.

3. Rowson, J.; Sangiovanni-Vincentelli, A.: Interface-
Based Design; Design Automation Conference, 1997.

4. Schneider, C.; Ecker, W.: Stepwise Refinement of
behavioral VHDL Specifications by Separation of
Synchronization and Functionality; EURO-DAC with
EURO-VHDL, 1996.

5. Mani Azimi, Ching-Tsun Chou, Akhilesh Kumar,
Victor W. Lee, Phanindra K., Mannava, and Seungjoon
Park, "Experience with Applying Formal Methods to
Protocol Specification and System Architecture",
Formal Methods in System Design, Vol. 22, pp. 109-
116, 2003.

6. Hahn, M.; Schu, M.; Keller, S.; Schneider, C.;
Carpentier, D.: System-On-Silicon for Liquid Crystal
Displays; IEEE International Symposium on Consumer
Electronics, ISCE, 2002.

	ABSTRACT
	REFERENCES

