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ABSTRACT 
A method and a tool to automatically derive top-level 
hardware description, low-level driver software and 
documentation out of a single source structural 
specification is presented. In contrast to system-level 
design tools this approach focuses on structural properties 
like interconnect, hierarchy and control/status registers 
instead of refining a functional specification. A table-based 
specification format was chosen to enable efficient data 
entry and review. Due to automatic code generation 
consistency between specification and design is guaranteed 
and error-prone manual transformations can be avoided. 
This paper focuses on specification and hardware 
generation. 
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1 INTRODUCTION 

System-level design is a highly interactive process. A huge 
amount of experience is needed and many trade-offs have 
to be made during design space exploration. Therefore, it is 
extremely difficult to automate this process, and most of 
the refinement steps from specification to design have to be 
done manually. Depending on the purpose of a model 
different languages may be used. In reality an executable 
specification is only available for parts of the design. These 
models were designed to perform algorithm evaluation and 
may serve as reference models for verification, but in most 
cases they are not suitable for direct refinement to a design 
realization. In addition, initialization is done differently in 
the abstract model than in the concrete design, and  IO and 
test structures are not covered at all. 

Due to these constraints we decided to focus on structural 
properties like interconnect, hierarchy and control/status 
registers instead of refining a complete functional 
specification. 

In this approach, functional blocks are treated as black 
boxes for top-level integration. The control and status 
registers are separated from the functional block to enable 
different address mappings and integration into different 
chip architectures (e.g. parallel control bus vs. serial control 

channels). Hierarchy information is separated from 
interconnect specification to enable easy hierarchy changes 
and flat (source to sink) interconnect analysis across 
hierarchies. Another structural issue is the multiplexing of a 
huge number of internal signals to a limited number of 
external IO pads.               

A tabular specification format was chosen for top-level 
interconnectivity, hierarchy, IO multiplexing and 
control/status registers. The major benefit of this approach 
is to maintain a single source of specification information. 
All code and documentation that can be directly derived 
from the specification is generated automatically to avoid 
any error-prone manual interaction and to guarantee for 
consistency between specification, documentation and 
design. 

2 RELATED WORK 

The proposed table-based structural specification is closely 
related to traditional text-based or schematic design entry 
but is intended as a method to bridge the gap between 
concept and design. In the first step the concept engineering 
captures the register specification and basic architecture 
definition (major control and data flow). Afterwards the 
specification is extended by implementation details to be 
ready for automatic code generation.  

Concept engineers prefer spreadsheets whereas designers 
often stick to their favorite text or schematic editor to 
capture the design. For this reason, the major issues related 
to these methods will be discussed briefly. While text-based 
design entry requires focus on syntax and formatting in 
schematic entry much time is spent on doing layout of 
blocks and wires.   Both methods require a significant 
amount of effort, which is not necessary to reach the goal – 
a compact specification of logical interconnect. On one 
hand block diagrams are very useful to understand and to 
discuss structural design issues but on the other hand they 
are very time consuming to create and to maintain. A 
solution to this problem is the creation of HDL code out of 
a compact logical interconnectivity specification and the 
visualization with generated block diagrams. 

Meanwhile, sophisticated debug tools [1] generate 
acceptable hierarchical block diagrams and allow analysis 



of fan-in and fan-out cones of signals across hierarchies. 
Unfortunately, the analysis capabilities are restricted to 
debugging and tracing of single signals. They are neither 
intended to a systematic review of all top-level 
interconnections nor for design entry and code generation. 

The table-based capture of structural specification 
information fills this gap between concept and design. It 
provides a means for a compact interconnect specification 
without having to deal with HDL syntax nor schematic 
layout issues. The HDL code is generated automatically 
according to predefined coding guidelines and naming 
styles. Schematics can be generated dynamically on 
demand by commercial tools. 

The hierarchy that is required by text and schematic entry 
to handle the complexity is kept separate from the 
interconnect definition. Filter capabilities in spreadsheets 
instead of hierarchy can be used to deal with complexity. 
By keeping hierarchy separate from interconnect it can be 
changed easily and signals can be traced at a flat top-level 
from source to all sinks across hierarchies. While text and 
schematics are block-oriented the table provides also an 
interconnect-oriented view. 

A commercial interface-based design tool [2] provides a 
table-based interconnect entry but there is no separation of 
interconnect and hierarchy nor there is dedicated support 
for register and IO multiplex specification.  Especially the 
support for register, IO, hierarchy and interconnect 
specification in a single source for automatic generation of 
derived code and documentation is seen as the key benefit 
of the proposed tabular specification. 

3 MAPPING OF SPECIFICATION OBJECTS TO 
DESIGN INSTANCES 

The single source structural specification consists of four 
tables (Interconnect, Hierarchy, IO, Register). Out of these 
tables, top-level hardware structure, HW/SW interface 
(register structure + low-level driver software) and 
documentation are generated. 

3.1 Software and Documentation 
The lowest layer of the driver software is generated out of 
the register sheet only. The purpose of this layer is to hide 
the mapping of logical control/status parameters to physical 
bit slices of one or several registers. The higher software 
layers can access these control parameters without having 
to care about address space mapping and masking 
operations. For documentation purposes various tables are 
generated that list registers ordered by address, 
alphabetically or in functional order. In addition an IO 
mapping table is generated to summarize the IO multiplex 
options. 
This paper focuses on the generation of the top-level 
interconnectivity. The basic architecture shown in Figure 1 
will be taken to explain the method. 

3.2 Basic Target Architecture 
Typically, our chips are structured in the following way: 
• CHIP: Pad frame containing the pad instances 
• TOP: IO control Cells (IOC) that perform 

multiplexing, grouped into N/S/W/E for layout 
purposes 

• CORE: Subsystems consisting of functional blocks, 
registers and interface blocks. For mixed VHDL/ 
Verilog designs wrapper blocks are necessary. 

Figure 1: Basic Target Architecture  



Control-oriented designs may consist of an internal CPU 
and a micro controller, both with their own bus. Designs for 
signal processing may only consist of a dedicated data path 
and a serial programming interface (e.g. I2C). A test 
controller (TC) and a chain connecting all IOCs (e.g. 
boundary scan or NAND tree) denote the presence of test 
logic. 
Not all connections have to be specified explicitly in the 
interconnect table for the generation of the top-level 
interconnectivity. Connections are automatically generated 
between core signals and IOC blocks by referencing signals 
from the interconnect table inside the IO table. 
An example is the connection between Fm and IOC (green). 
Additionally, so-called implicit signals are generated by 
assignment of a register to a functional block in the register 
table, e.g. the connection between Rm and Fm (yellow). All 
other connections have to be specified explicitly (orange). 
User defined macros, e.g. for signal bundles, are supported 
to increase the abstraction level of the specification. Further 
reduction of typing can be achieved for regular interconnect 
structures, like boundary scan chains, by the usage of 
regular expression matching for instance names (red). 
These features will be described in more detail in the 
following sections. 
All interconnections are described directly between 
functional blocks, registers, IO cells and pads. These blocks 
are treated as black boxes for top-level integration. The 
methodology can be applied in a hierarchical manner 
because there is no assumption on the granularity of the 
leaf blocks. A module designer may treat adders, FIFOs or 
FSMs as leaf blocks. For chip-level integration these 
internally developed modules or intellectual property 
blocks from third parties may be treated as leaf blocks 
(black box). Intermediate hierarchies, e.g. CHIP, TOP, 
CORE and subsystems, or simulator dependent wrapper 

frames between VHDL and Verilog are not considered for 
the interconnectivity specification. The hierarchy is 
specified in a separate table and used only for HDL code 
generation. While hierarchy is required for text or 
schematic capture it is replaced by filter capabilities of 
spreadsheets. Therefore, several attributes, assigned to the 
signals, can be used to focus on a selected aspect of the 
design.  Besides a bundle name to group signals a class 
attribute is provided to select between data, control, test, 
clock or reset signals. This capability is especially useful 
for systematic reviews: All signals that belong to a certain 
category, e.g. test, can be traced from source to all 
destinations across all hierarchies. This can be done in a 
systematic manner rather than randomly one signal after 
another in a schematic tool. 

3.3 Interconnect 
There are four different types of interconnect specification 
objects that directly correspond to VHDL or Verilog design 
objects. A signal, in Verilog called net, is a connection 
between leaf blocks that has at least one driver (source) and 
at least one load (destination). A port describes an interface 
of the top-level and can be of mode in, out or inout. 
Constants are used to parameterize instances.  Generics 
provide a means to pass constant parameters to leaf 
modules. The basic source of interconnect specification is 
the interconnect table, a list of interconnect objects.  An 
example is shown in Figure 2. 
The first row holds the tags identify the columns. This 
allows for swapping or inserting columns without the need 
to modify the table parser. There are two additional 
columns that are not shown in Figure 2: There is a 
description text column and an ignore column that can be 
used to mark a row as a comment line. A mode attribute 
distinguishes between different objects: Signal, port, 

::gen ::bundle ::class ::clock ::type ::high ::low ::mode ::name ::out ::in
RGB Data CLKF logic 7 0 SIG_R MODA/R MODC/R
RGB Data CLKF logic 7 0 SIG_G MODA/G_LO(3:0)=(3:0),

MODB/G_HI(3:0)=(7:4)
MODC/G(5:1)=(7:3),
MODD/G(7:5)=(2:0),
MODE/G=(0)

RGB Data CLKF resolved 7 0 SIG_B MODA/B(7:0), MODB/B(7:0) MODC/B(7:0)
$i (1..147),
/IOC_(\w+)_$i/

NAND_TREE Test TCK logic NAND_OUT_$i IOC_$1_$i/NAND_OUT IOC_$1_{$i+1}/NAND_IN

/IOC_(\w*O)_(\d+)/ PAD_CTRL IO logic PAD_DO_$2 IOC_$1_$2/DO PAD_$2/DO
MH StdIF $1 YCrCb_$2_$3_$4 $5 $6
MD $5_$6 StdIF C $1 logic $5_AP $5/AP $6/AP
MD $5_$6 StdIF C $1 logic $5_HSYNC $5/HSYNC $6/HSYNC
MD $5_$6 StdIF C $1 logic $5_VSYNC $5/VSYNC $6/VSYNC
MD $5_$6 StdIF D $1 logic $4 0 $5_CB $5/CB($4:0) $6/CB($4:0)
MD $5_$6 StdIF D $1 logic $3 0 $5_CR $5/CR($3:0) $6/CR($3:0)
MD $5_$6 StdIF D $1 logic $2 0 $5_Y $5/Y($2:0) $6/Y($2:0)
MX StdIF CLKD YCrCb_8_7_7 BLE CST

integer C 6 FIFO/DEPTH
/(IOC_\w+_\d+)/ TOP IF integer G WIDTH 8 $1/WIDTH

TOP IF CLKF logic WIDTH-1 0 I DATA_IN MODC/Y

Figure 2: Interconnectivity Table  



generic and constant. The name of each interconnect object 
has to be unique for the flat interconnect specification. 
Objects are further described by a type and range (for 
vector types), bundle name and class attribute for sorting 
and filtering purposes and an associated clock for signals 
and ports. At the beginning of the table different examples 
for signal definitions are shown.  In the single bus example 
the width of the ports can be omitted when identical to the 
signal width. The split bus example shows a signal where 
one bit slice is driven from module A while the second slice 
is driven from module B. At the destinations the signal 
branches to modules C, D and E. For this connection the 
bits 7 down to 3 of the signal are mapped to bits 5 through 
1 of the port G of module C. Tri-state bus connections can 
also be specified. The usage of regular expression matching 
and a counter loop for a very compact specification of a 
regular interconnectivity structure is shown for a NAND 
tree. 
The algorithm to generate the regular interconnectivity 
structure is shown in Figure 3 in PERL syntax. 
foreach my $i (1..147) { 
  foreach $inst (%inst_hash) {                                               

                           
                                              
                                                  

            
                                       
                  

In the hierarchy table regular expressions for instance 
matching can be used for grouping of instances. This 
feature is shown for pads and IO control cells. In the PADS 
hierarchy all instances matching “PAD_” followed by a 
number between zero and 147 are grouped. These instances 
were generated from the IO table described in the next 
section. The IO table also defines the pad type, i.e. the 
entity name. To avoid duplicated information and to enable 
grouping by regular expression matching the entity table 
cell for pad instances is left empty. The generator tool gets 
the correct entity name for each pad instance from the IO 
table to expand the hierarchy table. A similar mechanism 
applies to the IO control cells. Here, the tool automatically 
generates an entity name according to the given naming 
rules. 

    if ($inst =~ /IOC_(\w_\w+)_$i/) {                  
      &add_conn(NAND_OUT_$i,                           
                IOC_$1_$i/NAND_OUT,                               
                IOC_$1_{$i+1}/NAND_IN, .... )                                                                  
    }                                                  
  }                                                    
}                                                      

Figure 3: Regular Expression Matching 

For each instance matching the regular expression within 
the specified loop a connection is added. The variables $1 
(matched part of instance name), $i (loop counter) and any 
expression like {$i+1} will be evaluated and replaced by 
their actual value. For simplification the evaluation is not 
shown in Figure 3. After the NAND Tree an example for 
multiple point-to-point connections of the data out ports 
between all IO control cells and pad cells is shown. 

For standardized interfaces like micro controller busses or 
data path connections macros can be defined to reduce 
typing effort and support abstraction. In Figure 2 a data 
path example is shown consisting of control signals (AP, 
HSYNC, VSYNC) and data signals (CR, CB, Y). The 

clock parameter ($1) of the macro header (MH) is just 
copied to all signals of the bundle in the macro definition 
(MD). The data widths ($2, $3, $4), the source ($5) and 
destination ($6) blocks will be replaced in the macro 
execution (MX) by the actual values. 

Finally, a constant definition to parameterize a FIFO depth, 
a generic definition to parameterize the width of IO cells 
and an input port whose width depends on the generic 
parameter are shown in Figure 2. 

3.4 Hierarchy 
Interconnectivity and hierarchy are separated to enable flat 
analysis of top-level interconnectivity. For each level of 
hierarchy all instances are listed with a reference to the 
parent hierarchy. The most important instance attributes 
like entity name, configuration name and language (VHDL 
or Verilog) are specified, Figure 4. 

Another feature of the hierarchy table is the specification of 
design variants. A special column (::variant) in the table is 
reserved for a list of variant names for each instance. Using 
this feature the PROBE module can be included in the 
FPGA variant for debugging purposes and can be dropped 
in the final Chip (Default) or Emulation version. We also 
used variants to replace various data path modules by 
bypass modules to reduce the gate count for the FPGA 
prototype. In this scenario modules that were not relevant 
for some tests were bypassed.  

::gen ::variants ::parent ::inst ::lang ::entity ::config
Default TESTBENCH MYCHIP VHDL MYCHIP MYCHIP_RTL_CONF
FPGA TESTBENCH PROBE VHDL PROBE PROBE_RTL_CONF
Default MYCHIP PADS VHDL PADS PADS_RTL_CONF
Default MYCHIP IO_SOUTH VHDL IO_SOUTH IO_SOUTH_RTL_CONF
Default MYCHIP TOP VHDL TOP TOP_RTL_CONF

$i (1..147),
/PAD_$i/

Default PADS PAD_$i VHDL ${::entity}_structural_conf

$i (1..42),
/IOC_(\w_\w+)_$i/

Default IO_SOUTH IOC_$1_$i VHDL ${::entity}_RTL_CONF

Figure 4: Hierarchy Table 

 



3.5 IO Structure 
Most of the designs are pin-limited and require IO 
multiplexing in mission mode as well as in test mode. 
While multiplexing options can be described very 
efficiently in tabular format the manual HDL 
implementation of all interconnections is very inflexible, 
time consuming and error-prone. The automation of this 
task is based on predefined IO Control cells (IOC). 
Different types of interfaces (e.g. GPIO, DRAM) require 
different IOCs. 

An example for an IOC is shown in Figure 5.  

EN

DO

DI

EN(0..n)
PAD

SEL(0..n)

DI

CHAIN_O

from other pads:

PD(0..n)
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Figure 5: IO Control Cell 

The IOC contains multiplexing logic, output registers and it 
may contain also test logic like a NAND tree or a boundary 
scan chain. Regular interconnect structures like the NAND 
tree and the connections between IOC and pad can be 
explicitly described in the interconnect sheet using regular 
expression matching and loops. All connections of core 
signals to the IOC multiplexer inputs have to be described 
in the IO table. A small example of an IO table is shown in 
Figure 6. It defines an input pad TM, two supply pads 
(VDD, VSS), an IO pad (GPIO) and another IO pad with 
pull up (PCK). Each row of the table describes one pad, its 

attributes, the IO control cell instance and the IO 
multiplexing.  
::pad ::type ::iocell ::port ::name ::muxopt ::muxopt

SEL PAD IOSEL_0 IOSEL_T
1 WC3I80 IOC_G_I DI TM TESTMODE TESTMODE
2 WVV3IO VDD
3 WVV0IO VSS
4 WC3B60 IOC_R_IO DI,

DO,
EN

GPIO GPIN,
GPOUT,
GPEN

SCAN_IN

5 WC3BC0 IOC_R_IOU DI,
DO,
EN,
PU

PCK ,
PCK,
PCK_EN

TCK,
,
,
'1'  

Figure 6: IO Table 

For the multiplexing a list of ports (::port) of the IOC is 
assigned to multiple lists of core signals (::muxopt). The 
direction of the pad is determined by the ports of the IOC, 
that are used in this multiplex option: Data In (DI), Data 
Out (DO), Output Enable (EN). In addition, Pull Up (PU) 
and Pull Down (PD) resistors in the pad can be controlled. 
A special row defines the control signals of the select 
inputs (SEL) of all IO multiplexers for each multiplex 
option (e.g. IOSEL_0, IOSEL_T). These select signals have 
to be explicitly defined in the interconnect sheet. The 
signals referenced in ::muxopt columns can be either 
explicitly defined signals from the interconnect table or 
implicitly defined signals that will be generated or 
expanded by the tool (e.g. signals from/to register blocks). 

3.6 Register 
Control and status registers are separated from the 
functionality of the processing units. This approach often 
referred to as interface-based design [3] or separation of 
synchronization and functionality [4] gives the maximum 
flexibility to adapt the units to different on-chip 
communication structures like control busses (e.g. µC) or 
control channels (e.g. ::type = I2C). An example of the 
register table is shown in Figure 7.  Each row of the table 
defines the bits (::b) of a control parameter and it’s 
attributes. The generator supports different access modes 
(::rw), auto address increment (::auto), update mechanisms 
(::sync) and reset values (::init). Several control parameters 
can be merged to a register by using the same sub address 
(::sub). Furthermore, registers can be grouped into register 
blocks (::interface). The grouping may be based on clock 
domains, update domains, or logical function. The HDL 
code generation works similar to the approach for the IO 
control cells. Different types of predefined registers with 
various generic parameters are instantiated and 

::type ::sub ::interface ::block ::rw ::auto ::sync ::clock ::reset ::b ::b ::b ::b ::b ::b ::b ::b ::init ::view ::comment
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF BRT.5 BRT.4 BRT.3 BRT.2 BRT.1 BRT.0 20 Y Brightness

Adjust
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF DIGSEL 0 Select digital

or analog input
I2C 30 I2C_VIDEO RGBF W Y VS_F CLKF RSTF YUVSEL 1 Y Select YUV or

RGB input

Figure 7: Register Table  



parameterized according to the register attributes defined in 
the table including clock and reset signals. The control 
parameters of the registers are connected to the functional 
blocks (::block) that are specified in the table. These are 
implicit connections and the corresponding ports at the 
functional blocks are automatically added. During this 
generation step parameters that are spread over multiple 
registers are combined to one signal. The hierarchical 
register blocks are also automatically generated. Finally, 
the register table includes attributes (::view, ::comment) for 
driver software and documentation generation. 

4 IMPLEMENTATION 

4.1 Data Model 
The Micronas Interconnect Spec eXpander converter tool  
(MIX) closely models the required high-level design 
objects like instances, signals, IO cells and registers. Perl 
provides powerful regular expression matching operators 
and   text processing capabilities. Design objects and other 
data structures are mapped to hashes and arrays. The 
relation between different design objects is shown in an 
UML-like format in Figure 8. 

A chip consisting of instances and signals can be seen as an 
abstract class. Only a concrete variant can be generated. 
Instances and signals are linked by ports. Hierarchical 
blocks can be nested while leaf blocks are not further 
decomposed. A register block is hierarchical, consisting of 
registers. IOCs, pads and functional blocks are leafs in the 
hierarchy tree. There are two types of signals: Implicit 
signals are automatically generated out of the control 
parameter specification of the register definition. These are 
the signals between functional blocks and the bit-fields of 
the control/status registers. Explicit signals are directly 
specified in the interconnect sheet as plain signals or they 
are expanded from macros or regular expressions. 

4.2 Step 1: Read Input Description, Generate 
Intermediate Data 

The converter tool starts up with some basic initialization. 
A set of company and project specific design guidelines 
and templates are read in and added to the tool 
environment. Design guidelines define standard naming 
conventions (e.g. pre- and postfixes) and other rules applied 
in later phases or used to check the generated data. 

The input tables are checked to make sure all required 
columns are available. Default values are applied to empty 
cells if needed.  Macro definitions and Perl match operators 
are preprocessed and stored in separate intermediate hash 
arrays to be applied later on. 

The signal descriptions from the EXCEL tables are stored 
in the hash array %conndb modeling the non-hierarchical 
connection matrix CONN. The signal names are used as 
hash keys. Each array element itself is another hash array 
addressing the input data columns. Thus a signal and its 
properties can be accessed easily by its name. A unique, 
flat name space for signals is guaranteed. The signal 
SIG_R from the example in Figure 2 is stored as shown in 
Figure 9. 

$conndb{'SIG_R'} = { 

'::bundle' => 'RGB', '::class' => 'Data', 

'::clock' => 'CLKF', '::type' => 'logic' 

'::in' => [{'inst'=>'MODC', 'port'=>‘R’, … ], 

'::out' => [{'inst'=>'MODA', ’port’ => ‘R’, … ], 

'::descr' => ‘single bus’, …}; 

Figure 9: Signal Data Structure 

Macro expansion helps to specify regular or repetitive 
connections like standard on-chip buses very efficiently. 
The CONN data structure gets extended when additional 
information for a signal is defined in later stages. 

For the instance specification a 
similar approach is taken. A 
HIER data structure keeps track 
of the hierarchy information by 
using tree objects. The instances 
make up a hierarchical view of 
the design data. The top node of 
the tree equals the design top cell. 
Additional instances and 
connections are added according 
to the specification in the IO.xls 
and Regs.xls input files.  

Various checks verify the 
consistency of the design 
hierarchy and connection matrix, 
e.g. detect instances not 
connected to the main hierarchy 
or drivers and loads. The check 
routines print out warning Figure 8: Data Model 

 



messages and flag the parts that 
conflict with the design 
guidelines. Based on these 
comments refinements to the input 
files should be applied by the 
designer. A rerun of the generator 
quickly shows the effect of the 
changes. A table-based approach 
for protocol specification is 
proposed in [5]. Even if the 
applications are different, both 
table-based approaches share the 
same benefits. Tables are 
relatively easy to read by both 
humans and machines and “easy” 
errors in tables can be caught by 
checks based on Boolean rules.  

Ports are added to the hierarchical 
blocks for signals crossing 
hierarchies. The resulting HIER 
and CONN data structures 
represent the top levels of the chip design. The data is 
written to disk in an internal data format, ready to be read 
in by the step 2. On demand an EXCEL workbook can be 
generated for review and for documentation purposes. 

Figure 8: Dataflow from Specification to Design 

4.3 Step 2: Generation of HDL Files 
After transfer of the dumped intermediate data to a UNIX 
environment, the HDL files are generated. In case of 
VHDL output the primary design units Entity, Architecture 
and Configuration are derived and written. Additionally, 
HDL dependent extensions or wrappers and tool specific 
extensions are added and written into files. 

4.4 Cross-Platform Implementation Summary 
The base module MixUtils.pm provides functions for 
reading and writing files in various formats and for the tool 
configuration environment. It hides all operating system 
details from the upper levels, see Figure 10. MixParser.pm 
and MixWriter.pm correspond to step 1 and 2. Simple 
scripts use the functions of these modules, hiding all 
implementation details and data structures from the user.  

5 APPLICATION RESULTS 

The proposed methodology and the prototype tool was 
successfully applied to a display processor and scaler for 
LCD TV applications [6]. The design was modeled using 
60 leaf modules at 7 levels of hierarchy connected with 500 
explicit signals, about 250 generated register instances with 
500 parameters resulting into the same number of generated 
implicit signals. Further, the design consisted of 90 digital 
pads with 4 functional and 2 test multiplex options each, 
resulting in around 1000 generated connections between 
pads IO cells and core signals. Out of 4 specification tables 
more than 25000 lines of VHDL code in 78 files were 
generated.  

6 CONCLUSION 

The fact than only a quarter of all connections were 
specified explicitly and that the rest was generated 
automatically, demonstrates the efficiency of the approach. 
But even more important than the productivity increase is 
the single source specification principle that guarantees 
consistency between all generated parts: HDL code, low-
level driver software and table-based documentation.  
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