
PROGRESS: PROcess GRaph For Embedded Systems and Software: Combining Top-
down and Bottom-up System Design Methodology

James R. Armstrong Shekhar S. Agrawal Hiren D. Patel Sandeep K. Shukla

Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic and State University

Blacksburg, VA 24061
Email: {jra, ssa, hipatel2, shukla}@vt.edu

Abstract
In this short position paper we briefly describe a
methodology under development at Virginia
Tech, for combining specification oriented
design methodologies and IP-reuse based design
methodologies for designing embedded systems.
Specification oriented paradigms are top-down,
and refinement based, and most of them have
sound mathematical modeling, abstract
representation, and supporting formal
methodologies. Ptolemy or SpecC can be cited as
examples of such methodologies and
frameworks. However, in the industry, cut-and-
paste reuse, and IP component based reuse are
used quite often. These reuse methodologies are
often ad-hoc in the absence of tools and
techniques to create abstract models from the
reusable components, and often due to the fact,
that in practice part of the design is done in a
specification oriented manner, while some parts
are taken from existing code base within a
company or from purchased IP-cores. We
propose using an abstract intermediate
representation of component functionalities,
namely, Process Model Graphs (PmG). Various
manipulative operations on such representations
can be viewed us ways to trim, merge, and join
IP blocks for systematic reuse. This methodology
will allow us to manipulate reusable cores in the
abstract, and make top-down specifications
merge with PmG abstractions of cores, and then
either map them to existing reusable
components, or generate required components
with tool support. This would lead to a design
methodology which successfully combines two
different methodologies into one and enables a
framework that can benefit from both the
approaches.

I. Introduction:

In the changing world of networked and
ubiquitous computing, increasingly sophisticated
handheld and bio-medical devices, embedded

computing is becoming pervasive and
increasingly complex. Furthermore, Moore’s
Law is imposing an even greater challenge by
the continuous improvement in silicon
technology at an exponential rate while the
design productivity of engineers and computer
aided design tools are not increasing at the same
pace. This ‘Productivity Gap’ in semiconductor
design industry has necessitated research and
development in design and validation
methodologies that can enhance productivity,
and render validation reliable and inexpensive. A
number of approaches have been proposed in this
context with the recent developments in system
level design languages and models of
computation which influence the choices of
reuse of intellectual properties and provide
efficient simulation and validation environments.
However, almost all proposed solutions to the
problem of system engineering have addressed
one of the two design flows. They have either
been Top-Down specification oriented using
languages such as Ptolemy or SpecC or a
Bottom-up IP reuse approach using languages
such as VHDL and SystemC.

In the Top-Down design flow, the process begins
with a specification from which an abstract
mathematical model of a system or a portion of a
system is constructed. This model is validated to
ensure that the specification is interpreted
accurately and different algorithms for
implementing the system behavior are explored.
Several stages of refinement follow this step
adding more details to the abstract model. On the
other hand, the bottom-up approach exploits
design reuse to achieve productivity necessary to
build complex systems. Historically, Chip
Design companies have always reused designs in
going from one product generation to another,
but the efficiency of bottom-up design is
enhanced by the reuse of IP-cores that a
company can buy from an outside source. The
challenges with using these IP-cores is designing



interfaces between the cores and other logic as
well as being confident about their correctness.

Figure 1. Integrated Top-Down/Bottom-Up Design
Approaches

II. Problem Statement

It is a commonly held belief among system
designers and CAD practitioners that one-of-a-
kind domain-specific construction
methodologies for such systems will not be
sufficient. Radical advances in systems
engineering are needed to allow composition,
reasoning and validation of these novel systems
and applications. In fact, such combining is
practiced in the industry in an unorganized
manner in almost every product design cycle.
However, lack of formalization of this combined
methodology leads to lack of tools and CAD
environments, which could lead to better
productivity in the design teams.

Figure 1 shows a schematic of our view of
industrial design practice, which we believe is an
ad-hoc combination of both top-down and
bottom-up design styles. The center block shows
the system model that integrates the designs
from the top-down and bottom-up design flow
processes and allows validation of its
correctness. For example, when designing a new
microprocessor, a top-down model is first built
for quick evaluation of performance and
feasibility but due to the existence of code and
IP-cores in house and off the shelf, eventual
implementation is often largely based on existing
IP blocks. Unfortunately, in most design cases,
this reuse is often cut-and-paste based rather than
being based on a solid methodology. Therefore,
in our opinion, neither a top-down nor a bottom-
up methodology by itself is an adequate design
approach, but a combination of the two can lead
to new system engineering tools and techniques

that will enable System Designers and Engineers
to design systems from IP-cores in a
specification oriented manner. This approach
will allow the development of semi or fully
automated refinement methodologies targeting
IP-cores or parts of IP-cores to be automatically
extracted from IP blocks. However, is it possible
to develop a sound and robust methodology and
design environment that can combine a top-down
specification and models extracted from cores
into a system model from which one can map to
existing cores, synthesize common protocols
between cores and synthesize parts of glue logic?

A comprehensive, robust methodology and
environment to combine the different design
approaches has not yet emerged due to the lack
of a single uniform semantic foundation for the
specification of either the high level models or
the cores represented at low level. To the best of
our knowledge, no work has been done in
combining the specification oriented approach
with the core reuse based approach because of
this lack of uniform semantic foundation. In this
paper, we introduce a robust system engineering
environment for embedded hardware/software
system that brings together the best of both
worlds. This environment is currently under
development.

III. Related Work:

The approach presented here is based on
advances in specification oriented top-down and
bottom-up IP-core reuse based hardware and
software design methodologies. Academic
projects and some CAD/EDA vendors have
supplied some tools and techniques, such as
Ptolemy [10] and Metropolis projects [9] from
UC Berkeley, VCC from Cadence [4], Co-
Centric System Studio from Synopsys [16],
Rational Rose [11] and other visual tools for
software development. These tools and
methodologies guide development of complex
hardware/software systems through visual
programmatic means, which can be viewed as
top-down development from high-level
specification enabled by a manual or semi-
automatic refinement methodology. On the other
hand, extensive bottom-up IP reuse [17] either in
the form of cut-and-paste of existing HDL code
or software code, or to some extent by propriety
standards for creating IP blocks is occurring in
the industry. Evidently, we see a need to
combine these two design approaches and

Bottom-
Up

Tools

Top
Down
Tools

System
Model

Core
Libraries

Synthesis
Tools



construct a comprehensive and robust
methodology and environment.

Attempts to construct a robust methodology
began with Kahn in 1974 by proposing the use of
processes as fundamental to modeling. In 1974,
Kahn presented the idea of Process Networks,
i.e., sequential processes with blocking read

Figure 2. Process Model Graph

interconnected by infinite capacity FIFOs [6].
Process Behavior was implemented using
Kahn’s Language constructs. VHDL and Verilog
employ process mechanisms [5, 12]. SystemC
has the notion of processes defined as methods,
threads and clocked threads. In [1, 2] we
advocated the use of PmGs to represent VHDL
behavioral models. Formal properties of
processes were developed in [7]. Recently, we
performed hardware/software co-design of a
GSM system using the PmG representation. [3,
13, 20]

IV. Our Approach

The basis of our semantic foundations for core
representation and top-down specification
refinement is proposed in the form of Process
Model Graphs (PmGs), and operational
semantics of each operation at the tool level are
given in the form of operations on PmGs. We
provide details of the denotational and
operational semantics for PmGs in [22] and limit
our paper to a brief overview of PmGs. Firstly, a
Process Model Graph (PmG) is a digraph [21]
whose nodes represent processes and whose arcs
represent signals as shown in Figure 2. Signal
arcs are labeled with the signal names they
represent, e.g., X and Y. Sometimes the name of
the generic delay for a signal is added to the
signal name, e.g., S(DEL_S). The PmG
represents a module. The input arcs I1 and I2
represent module inputs, and the output arcs O1
and O2 represent module outputs. Other arcs
represent internal feed-forward (X and Y) or
feedback (S) signal flows.
The operations that can be performed on a PmG
are join, trim and merge. Joining and trimming

are most frequently employed when IP-cores are
ported into the System Model PmG. Cores are
either hard or soft cores. For ASICs, hard cores
consist of the IC layout and for FPGAs the bit
file. Soft cores consist of an RTL description in
VHDL or Verilog. Hard cores must be
accompanied by behavioral models so the core
can be joined with other models for simulation
purposes. Soft cores may not have behavioral
models because the RTL model can be used for
this purpose. IP-cores are more marketable if
they offer a range of capabilities. However, when
constructing the PmG system model we wish to
use specific instances of the core. Thus, before
joining the core model to the PmG, the core must
be trimmed of redundant behaviors. Below we
discuss the nature of the trim and join operators.
We present these concepts in the context of an
example where core models are to be inserted
into a system model implemented via SystemC.

Figure 3 shows a core based model which
interfaces a FIR filter to a two channel CODEC.
There are two cores in the model: 1) the FIR
filter is a hardcore which is produced by Xilinx’s
Coregen Program [19] 2) the Clock Generator
and the Channel are soft VHDL cores provided
by the board manufacturer [18]. The CODEC is
fixed hardware and the core based model is a
VHDL model to be implemented in FPGAs.

Trim Operation: The trimming operation
generally results to three forms of elimination of
redundancy in the existing cores. For example,
one might have an ALU core, that does both
integer, and floating point computation. If the
required use, does not require floating point
operation, one can use program slicing
techniques to eliminate the parts relevant to
floating point operations. In the example of
Figure 3, we have used three kinds of trimmings
as follows:
Functional Elimination: three processes are
totally eliminated because high level knowledge
of the model shows that these processes are not
required.
Eliminated By Code Trimming: instantiation of
the parameter values trims the code of process
such that the process merely passes inputs to
outputs without modification and without delay,
resulting in the elimination of that entire process.
Internal Code Trimmed: instantiation of the
parameter values in trims the code of process by
a certain percentage.
For example, The FIR filter is a Serial
Distributed Arithmetic FIR Filter. It performs the



Inter-
face

Module

required multiply – accumulate operations
serially to save chip area. The core can either be
used by itself or a number of them cascaded
together. It can be specialized in a number of
ways depending on the nature of the FIR filter
being designed. Accompanying the core is a
multi-process, VHDL behavioral model.
Applying the Trimming operation for this core, it
is found that a total of 10 functions are
eliminated and the resulting core had 39% less
inline code than the original core.

Join Operation: As shown in Figure 3, an
Interface Module is used connect the CODEC

Figure 3. IP-core system model

Interface Core to the FIR core. It performs two
functions: a) converts an Output Data Available
(ODAV) level to a ND single clock period pulse,
and b) registers the filter results output which is
stable only for one clock time. Implementation
of this interface module is an example of a join.
In order to automate the joining process, one
may have to use behavioral typing [8] of core
interface signals. In the system illustrated in
Figure 3 two data types are used: 1) for control:
std_logic, and 2) data: std_logic_vector. As part
of an automation process, one can define two
behavioral types: control and data. The join
operation consists of type conversion between
behavioral types, e.g., the Interface Module in
Figure 3 performs two behavioral type
conversions: a) type 1_level to type p_pulse and
b) type momentary to type registered. Certain
assumptions underlie this type hierarchy, i.e.,
pulses last for one clock cycle as does
momentary data.

Merge Operation: Often two cores may be
merged in the context of eliminating redundant
signals [3].. External signal storage is replaced
by internal variables. The read/update
mechanism for variables is designed to ensure
the same computation.

Mapping Operation: A process whereby two
different PmGs in distinct domains can be
related to each other by certain mapping
definitions provided in [22]. Rigorous definition
of mapping is needed to automate the process of
mapping a PmG to PmG models of existing
modules.

Example

To test our PmG structure and the operations
associated with it, we developed a System PmG
and an associated SystemC model for the system
shown in Figure 4 which is an example for PmG
mapping. We utilize the cores described in
Figure 3. The CODEC is a two channel, 20 bit
A/D, D/A converter, with serial input and output.
The CODEC Interface performs a serial-to-
parallel (read) and parallel-to-serial (write)
conversion. In the system shown in Figure 4,
only the input from the CODEC on one channel
is used. Thus, the CODEC Interface core is
trimmed to a single channel, read only
configuration. The CODEC Interface Core is
RTL VHDL. The hardcore FIR filter is modeled
by behavioral VHDL and is also trimmed to
match the specifications. The join operator is in
VHDL. The BUS is a high speed serial bus
implemented in SystemC, the FFT and Format
and Display actors are Ptolemy actors operating
in the SDF domain.

We translated the above mapping example into a
SystemC model as shown in Figure 5. The
experiment validated the usefulness of our PmG
operations. It was conducted manually, but
automation of this process is under investigation.

Our PmG approach not only provides a robust
and comprehensive methodology for design but
the integration of hardware/software co-design is
a direct byproduct of the proposed methodology.
It is very important that modeling,
hardware/software co-design, and synthesis be
integrated. To put it in a nutshell, the system
procedure can be split into 5 different steps as:

1. The Process Model Graph (PmG) is
extracted from the SystemC system
level model.

2. Each Process Pi is characterized in terms
of its software (Csoft) and hardware
(Chard) complexity. An Instruction Set
Simulator (ISS) or profiler for the core
processor is used to determine Csoft for

In
te

rf
ac

e
M

od
ul

e

Clock
Generator

(Soft)

CODEC Channel Filter

System Model

Shift
Clock

Right/Left
SI

SO

DATAOUT

ODA

ND

RDY

RESULTS

RRDY

RESULTS

(Soft)

CODEC Interface



each Pi whereas a Behavioral Synthesis
Tool determines Chard.

3. Using the process complexity values
from the Process Library and deadlines
from the Constraint Library, the Graph
Partitioning Algorithm partitions the
graph into hardware and software sub-
graphs

4. In step 3: the Graph Partitioning
Algorithm generates a new set of
process complexities for those
processes assigned to the hardware sub
graphs. Also, whenever a signal crosses
the boundary between the hardware and
software sub-graphs, delay overhead is
incurred because of bus delay and
processor task switching time. This
information is back annotated to the
PmG where new delay values are
assigned to nodes in the hardware sub-
graph and process nodes are added to
the graph at the partition boundary to
account for bus and processor task
switching delays.

5. The Graph Partitioning Algorithm then
rechecks the deadlines.

This approach was applied successfully to
hardware software co-design of a system which
implements the GSM transmitter and receiver
sections. The software target was the StarCore
140 Processor; the hardware targets the
Synopsys SystemC compiler. The system
automatically identified partitions between
hardware and software that meet all GSM timing
constraints [3].

Case Study

Ptolemy is a top-down design based tool that
supports heterogeneous modeling, simulation,
and design of concurrent systems [10]. Different
Models of Computations (MOCs) that deal with
concurrency and time can be modeled using this
tool. Each MOC gives an interaction mechanism
for components in the model. In PtolemyII, each
MOC is represented in a different domain. The
choice of the type of Director dictates which
particular Model of Computation is to be used.
The chosen Model of Computation provides
execution semantics for actor components of the
model and the method of communication
between actors. The model of communication is
implemented in the Actor receiver, which is
specific to the Model of Computation. In
SystemC, the execution semantics is
implemented by the simulation kernel. The

method of communication is chosen by the way
in which the Channel between actors is
implemented. In Ptolemy, the receiver is buried
inside an actor, thus communication is implicit in
the Model of Computation. In SystemC the
Channel is an explicit component. The SystemC
kernel implements a two phase simulation cycle:
1) EVALUATE PHASE: Evaluate the set of
currently triggered processes 2) UPDATE
PHASE: Update Channels to values within the
same evaluations cycle (zero time delay), after
delta delay, i.e., updated in the next update cycle
and results are available at the next evaluation
cycle, or updated at a later time in the simulation
during an update cycle. During the evaluation
phase, processes notify events and during the

update cycle those events are triggered. These
Ptolemy Actors can be coded in a behavioral
fashion and modeled as PmGs. We have
conducted work in [22] where we provide an
example of an automation of transforming a
Ptolemy Actor into a SystemC module. Current
work in constructing PmGs from SystemC
modules is also underway, allowing for a rendez-
vous for Ptolemy Actors to be brought down to
the PmG level and IP-cores to be brought up to
PmG level given that IP-cores were provided in
SystemC modules. Once having constructed the
PmG, the above described operations can be
performed on the PmG. This trimmed, joined
and merged PmG can then be then mapped onto
an IP-core for future industrial reuse.

V. Future Work:

Automation of this new methodology will be the
key to faster and better reuse of cores, together
with merging top-down and bottom-up
methodologies. Our focus is to automate the
extraction of PmG models from SystemC cores,
implement a framework to apply operators,
namely, Trim, Join and Merge, followed by

Core
Libraries

CODEC
Interface

Join
Operator

FIR
Filter

BusFFT
Format

&
Display

hardware soft hard

core

SystemCPtolemy

Figure 4. Comprehensive PmG Mapping Example



creating a robust design framework that
facilitates design reuse. Development of a GUI
for easy user interaction and reduced design time
is also one of the long term goals of our work.
We also plan on adding validation capabilities in
the framework.

VI. Conclusion:

In this paper, we have introduced a new
development methodology that brings together
two different design flows, the top-down and
bottom-up flows. The methodology makes use of
Process Model Graphs (PmGs) to achieve this
goal. The various operations that PmGs support,
namely Trim, Join and Merge and the ways in
which these operations help in developing the
model has been shown. The entire design
methodology is illustrated by a comprehensive
example that makes use of all the design aspects.
In summary, PmG based representation of
system models as well as core models and
automatic extraction and manipulation of such
representation will enable us to create an
environment and methodology to combine a
core-reuse based methodology with specification
driven methodology.

Figure 5. PmG Based Partitioning, and Synthesis
System

VII. References:
[1] J. R. Armstrong and F. G. Gray, VHDL Design

Representation and Synthesis, Englewood Cliffs,
N.J., Prentice Hall, 2000.

[2] J. R. Armstrong, Chip Level Modeling With
VHDL, Prentice Hall, June 1988,

[3] J.R. Armstrong, J. M. Baker, and P. Adipathi,
“Model and Synthesis Directed Task Assignment
for Systems On A Chip,” Proceedings of the 15th
International Conference on Parallel and
Distributed Computing Systems, Louisville, KY,
September 2002

[4] Cadence Website on VCC,
http://www.cadence.com/products/vcc.html

[5] IEEE Standard 1076-93 Language Reference
Manual.

[6] G. Kahn, "The Semantics of a Simple Language For
Parallel Programming", Proceedings of the IFIP
Congress 74, 1974, North Holland.

[7] A. Lee and A. Sangiovanni-Vincentelli, " A
Framework for Comparing Models of
Computation," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
Vol. 17. No 12. December 1998, pp 1217-1229.

[8] Edward A. Lee and Yuhong Xiong, "Behavioral
Types for Component-Based Design,"
Memorandum UCB/ERL M02/29, University of
California, Berkeley, CA 94720, USA, September
27, 2002.

[9] Metropolis Project Home page,
http://www.gigascale.org/metropolis/

[10] “Ptolemy II, Heterogeneous Current Modeling and
Design In JAVA,” Memorandum UCB?ERL
M)1/12, March 15,20001

[11] Rational Rose Webpage,
http://www.rational.com/products/rose/index.jsp

[12] Sagdeo, V, The Complete Verilog, Book, Kluwer
Academic Publishers, Boston, MA, March 1998,

[13] B. Sirpatil, J. M. Baker, J.R. Armstrong, “Using
SystemC to Implement Embeded Software,”
Proceedings of HDL 2002, San Jose, March 2002,
pp 41-45.

[14] J. E. Stoy, Denotational Semantics: The Scott-
Strachy Approach to Programming Language
Theory, Cambridge, MA: MIT Press, 1977.

[15] SystemC Consortium: www.systemc.org
[16] Synopsys Co-Centric Studio product webpage,

http://www.synopsys.com/products/cocentric_studi
o/cocentric_studio.html

[17] Virtual Socket Interface Alliance Webpage,
http://www.vsi.org

[18] www.xess.com
[19] Xilinx , www.xilinx.com

[20] A. Varma, J. R. Armstrong, and J.M. Baker, “A
SystemC GSM Model for Hardware/Software Co-
design,” Proceedings of HDL 2002, San Jose,
March 2002, pp 41-45.

[21] Wilson, Introduction to Graph Theory, Academic
Press, NY, 1972.

[22] J. R. Armstrong, and S. Agrawal, “Denotational and
Operational Semantics of Process Model Graphs,”
Submitted. Available at
http://www.visc.vt.edu/armstrong/jra_vt_pmg.pdf

P1 P2

P
3

Hardware

SoftwareCsw

Chw

SystemC
System Level

Model

Graph
Partitioning

Algorithm

Process Library

Process Model
Graph

Timing
Constraints

Instruction
Set

Simulator
Or Pointer

Behavioral
Synthesis

Tool

PMG

Deadlines

Backannotation

Process
Complexities

Csoftware CHardware

Backannotation

Csw

Csw

Chw

Chw


