
Formal Interface Compliance Verification

C. Norris Ip

ip@tempusf.com, Tempus Fugit, Inc., Fremont, CA

Abstract
This paper discusses the role of formal interface
compliance verification in a design flow, and how it can
significantly improve the design and verification process
of complex SoC.

1 Introduction
Most complex SoCs and reusable IPs being designed
today work around standard interfaces. And as design
complexity increases, proprietary interfaces are also
being developed more vigorously within large companies
to partition a complex design and for reuse across
multiple product generations.

The verification problem for designs using these
interfaces is critical [1]. Frequently, during the design
stage, it is not known which specific systems the SoC or
the reusable IP will be interacting with. Furthermore, it is
possible that different designers reading the same
English specification may interpret various scenarios
differently.

Since 1999, the team at Tempus Fugit has been
formally verifying complex interfaces, for a wide range
of designs. To prepare for these verification efforts, we
first captured the interface requirements in an executable
verification module. We will use PCI [2], AGP [4], and
PCI-Express as examples in this paper. Each of these
interfaces contain more than a hundred requirements,
some come from the actual compliance checklist from
PCI-SIG [3], and some come from the English
specification documents.

Once the requirements were captured, we reused
them for a wide range of designs. Using TempusQuest,
an advanced formal verification tool developed at
Tempus Fugit, we analyzed each complex design for
compliance with these requirements, exhaustively
catching all corner cases that violate these requirements.
These efforts can fit into any existing methodology and
lessen the effort in writing simulation test cases to hit
these corner cases.

Finally, to obtain the maximum benefit of formal
technologies, we also apply our tool to the interfaces at
the individual blocks of a design, utilizing an assume-
guarantee approach to verify the interaction among
multiple components. We also applied formal techniques
on some of the end-to-end requirements for the
components. In doing so, we can replace a significant
portion of ad-hoc unit-level simulation tests, resulting in

shortened integration time, and perform formal
regression to make sure last minute changes have not
broken the design.

PCI, AGP, PCI-Express and other standard or
proprietary interfaces contain complex requirements.
While there are several commercial assertion-based
verification products, their focus is typically simple local
assertions instead of complex interface requirements. If a
requirement is too complex for the automated analysis to
formally verify, the requirement is validated in
simulation instead (as stimulus generator and event
checker). However, we have been able to consistent
verify them formally with our verification engine
developed at Tempus Fugit. In fact, the tool is powerful
enough to verify not only interface compliance, but also
end-to-end functional requirements.

In section 2, we summarize various aspects of
functional verification of these complex designs, and
then in section 3 we move on to discuss the potential
productivity gain through the consistent use of formal
techniques.

2 Functional Verification of RTL Designs
The various aspects of functional verification can be
summarized as follows:

Local Assertions

A local assertion is a statement to declare the
implementation decision with respect to the code in
the surrounding vicinity. Examples include one-hot
encoding, queue-overflows, etc.

Figure 1. Local Assertions

Interface Requirements

An interface requirement is a statement to declare
how two entities communicate with each other. Each

design

requirements

mailto:ip@tempusf.com

Electronic Design Process Workshop, April 2003. Page 2 of 5

entity can be a complete ASIC design, an SoC
design, a reusable IP, or a block within a design.

Figure 2. Interface Requirements

Let’s take the PCI and AGP interfaces as examples.
PCI has more than a hundred requirements, and one
requirement is that the master must always assert
byte enables on the upper bits of CBE when the
master asserts REQ64# and the slave has not
responded. AGP has a similar number of
requirements, and one of the requirements is that, if
any AGP read or write grants are pending, the core
logic must not start PCI or fast-write transaction.

End-to-End Functional Requirements

An end-to-end functional requirement is a statement
to declare what an entity should generate with the
supplied data. The entity can be a complete ASIC
design, an SoC design, a reusable IP, or a block
within a design.

Figure 3. End-to-End Functional Requirements

Let’s take the link layer of the PCI-Express interface
as an example. For each packet going into the design,
we need to verify proper sequence number
assignment to the corresponding outgoing packets,
their data integrity, proper ordering, and that the
design does not drop or duplicate packets.

System-level Requirements

A system-level requirement is a statement to declare
the overall behavior of the design across time.

Sometime it involves less tangible items such as
typical throughput, etc.

The complexity of these requirements increases as they
move from local assertions to system requirements.
Because local assertions cover the code in the
surrounding vicinity, these local assertions tend to catch
local problems.

Because interface requirements describe how two
entities communicate to each other, they typically
involve the control logic of the design. These
requirements become the contract between the two
entities. The verification of these requirements on each
entity is challenging because of potential ambiguity in
the specification and because of the complex corner
cases due to the possibly arbitrary behavior of the other
entity.

While the implementation within a module may
change from time to time, a well-designed interface is
less likely to change. This is especially true for standard
interfaces and reusable cores. Furthermore, it is usually
difficult to manually create simulation test benches to hit
all the corner cases with respect to the interface
requirements, so it naturally calls for a formal solution.

On the other hand, end-to-end functional
requirements are related to the data-path and the overall
functionality of the design. Formal verification of these
requirements is often more difficult, but it has the
potential of significantly contribute to the ASIC and IP
sign-off process.

Finally, less tangible system requirements are
probably best done by system-level simulation, which is
outside the topic of this paper.

3 Using Formal Interface Compliance Verification
The ability to formally verify interface requirements (and
end-to-end functional requirements) can have a big
impact in the design process. Without it, a design flow
may look like the diagram in Figure 4.

Figure 4. Basic Design Process

define
micro-architecture

write RTL
for each block

basic unit tests
(basic bugs)

full-chip simulation
(basic and corner case bugs)

basic integration
(basic bugs)

test plan

requirements

design

A

requirements

design

requirements

Design IP

Electronic Design Process Workshop, April 2003. Page 3 of 5

In this process, the designer would write ad-hoc unit-
level simulation tests to verify some functionality of the
blocks, but the main effort in finding corner case bugs
would have to wait until full-chip simulation is up and
running. Because of the loose interaction among the
development of individual blocks, a significant amount
of time is also spent in the integration of the units before
full-chip simulation is ready.

With a formal tool capable of verifying complex
interface requirements, significant improvement in the
development process can be achieved with minimal
changes to the existing methodologies. For example, it
may be shortened into something like the diagram in
Figure 5.

Figure 5. Formal Interface Verification

The steps relevant to the use of formal interface
compliance verification in this diagram are:

1) Work out the overall architecture of the design.
2) While defining individual components in the design,

create or buy appropriate interface verification
module for formal analysis.

3) While developing the RTL code for individual
components, debug the code interactively and
formally with respect to the requirements in the
verification modules.

4) During the process of developing the RTL code,
exchange assumptions among the designers and
verify them formally.

5) When full-chip simulation is up and running,
maintain the day-to-day correctness by running
formal regressions.

In this process, the interface requirements are used as a
contract among the blocks in the design. If each block
has been verified using the same interface verification
module before integrating into full-chip simulation, the
integration step would be much shorter.

Furthermore, the full-chip simulation step would also
be shorter, because corner case bugs with respect to the
interfaces and blocks are detected early during the unit-

level verification. While the designers are busy writing
the RTL, the verification engineers can write or obtain
appropriate interface verification modules. We have also
designed our tool so that the verification of the unit may
start even before the RTL of the block is complete,
because our tool will regard the missing pieces as black
boxes.

Finally because formal verification achieves 100%
coverage for the requirements, the proofs performed
during the early steps can be executed again as an
effective formal regression during the later steps, while
enhancements and non-interface bug fixes are made to
the design description.

The remainder of this section will go over each step
in more details.

3.1 Interface Verification Modules
Very often, it is possible that different designers reading
the same English specification may interpret various
scenarios differently. It is important that the designers or
the verification engineers consider all possible
interpretation of the other side of the interface.

Writing the interface requirements in an executable
format would reduce the possibility of misunderstanding.
We tested our verification modules for various standard
interfaces in a wide range of designs, and therefore, have
resolved most of the misunderstanding. For proprietary
interfaces, the architects or the verification engineers
responsible for the design may write the verification
modules. Because these verification modules are written
independently from the design efforts, discrepancy in the
interpretation of specification by the architects and the
designers can be resolved through the formal verification
process.

The actual languages in which these requirements are
specified are not critical to the design flow, as long as
they have clear semantics associated with them. In many
cases, a hardware description language such as Verilog
and VHDL is sufficient. Open Verification Library
(OVL) can be used a convenient layer on top of Verilog
for a more concise assertion specification.

There are other advanced languages being
standardized in the industry. A declarative property
specification language is being standardized by the
Accelera Formal Verification Technical Committee, and
a procedural assertion construct proposal is being
evaluated by the Accelera SystemVerilog Committee.
Both of them contain constructs that are more expressive
than Verilog and VHDL, useful for liveness properties
that describe infinite behavior.

One of the difficulties in getting the designer to use
assertion-based verification is to persuade them to write
assertions. By supporting HDL languages, they can start
capturing requirements without learning a new language.

identify interface
verification

formal interface test
corner case bugs

sanity simulation tests

full-chip simulation

integration

define
micro-architecture

write RTL
for each block

test plan

Electronic Design Process Workshop, April 2003. Page 4 of 5

By concentrating on interfaces, the verification module
can be created by anyone, not necessarily the designer.
Using it as a contract between two components can avoid
misunderstanding, and free up precious simulation time
for validating the transaction-level activities of the
design.

3.2 Formal Block-level Verification Before
Simulation

Because the formal analysis does not depend on the
creation of a test bench, designers can start verifying
their blocks without waiting for the simulation
environment to be up and running. Furthermore, formal
verification may start even when the RTL code has not
been completely developed. Any missing code in the
RTL can be regarded as a black box that generates
arbitrary outputs. If the existing RTL can be formally
verified with these arbitrary behaviors, the RTL is
guaranteed to behave correctly when the missing pieces
are added.

3.3 Simplifying the Integration Process
Traditional unit-level simulation tests are usually done in
an ad-hoc way with restricted stimulus. Therefore, they
usually test the basic behavior of the block only.
Furthermore, as shown in Figure 6, the stimulus
generator and the event checker for individual blocks are
typically developed independent of each other, and it is
difficult to determine whether the generator for block A
generates all legal outputs from block B and vise versa.

Figure 6. Unit-level Simulation Tests

When formal verification is used, the same interface
verification module can be used for the verification for
both block A and block B, as shown in Figure 7.

Figure 7. Formal Unit Tests

During the verification of block A, the proof can be set
up as follows:

% assume b_req
% prove a_req

and during the verification of block B, the proof can be
can be flipped as follows:

% assume a_req
% prove b_req

This style of proof structure is known as the assume-
guarantee approach. Because formal verification is
exhaustive, the verification of block A may also detect
extra assumptions about block B in order for block A to
function correctly. These assumptions can be appended
to the verification module so that they can be verified in
block B. A semi-formal or simulation methodology
would be less effective

The fact that these requirements can act as a contract
has serious implications. As shown in Figure 8, it can be
used to verify an IP core while capturing its assumption
about the environment. The same requirement can be
packaged with the IP so that the IP user to verify those
assumption (formally or informally) to make sure the
SoC is using the IP correctly.

3.4 Trust-worthy Regressions
The verification modules and the set up scripts for the
proofs at the unit level can also be reused as a formal
regression through out the later steps in the design
process. Because the addition of a new feature or the fix
for other functional requirements may introduce new
corner cases, it may break existing features. Because of
the new corner cases, existing simulation tests may not
be able to detect this problem. New tests have to be
written for both of the old and the new features. With
formal verification, the formal proofs can automatically

BA

Generator A

Checker A

Generator B

Checker B

a_req b_req

BA

Electronic Design Process Workshop, April 2003. Page 5 of 5

adapt to the new design description and verify the new
corner cases as well, so the designers only need to verify
the new features.

Figure 8. IP and Its Operating Environment

4 Conclusion
In this paper, we identified the various aspects of
functional verification and described how formal
verification can significantly impact the design process.
Our experience indicates that applying formal tools for
the interface compliance verification (and end-to-end
functional requirement) can lead to a significant
productivity gain.

Reference
[1] Vigyan Singhal and Joseph Higgins, Compliance

Verification for SoC and IP interfaces. DesignCon
2002.

[2] PCI Special Interest Group. PCI Local Bus
Specification Rev 2.2. December, 1998.

[3] PCI Special Interest Group. PCI 2.2 Compliance
Checklist. www.pcisig.com.

[4] Intel Corporation. Accelerated Graphic Port
Interface Specification, Revision 2.0.

SoC

IP core

requirements

	Abstract
	Introduction
	Functional Verification of RTL Designs
	Using Formal Interface Compliance Verification
	Interface Verification Modules
	Formal Block-level Verification Before Simulation
	Simplifying the Integration Process
	Trust-worthy Regressions

	Conclusion
	Reference

