
Property Specification:
The key to an assertion-based verification platform

Harry Foster

EDPS 2003 Harry Foster

Electronic Design Processes 2003

“As the requirements and complexities of electronic
design increase, past ad-hoc approaches to design
processes are proving inadequate.”

Verification doesn’t occur in a vacuum.
Specification must occur prior to any form of verification
My talk focuses on the justification and benefits for
moving to a more formal process

EDPS 2003 Harry Foster

design intent

Design Intent Challenge

functional
specification

How can we specify the design intent in a form that can be verified?

How can how can we know what has been specified has been verified?

RTL implementation

X

intended,
specified,
implemented

EDPS 2003 Harry Foster

Design

Refine &
Partition

Today’s Design and Verification Flow

Validate

Integration &
Verification

IPTest

SRAM

I/F

CPU

Chip testbench
IPTest

SRAM

I/F

CPU

Chip

Controller

FIFO M
U
X

Algorithm

Sync
Super-
Block

FSM
Actions

Actions

Timer

FSM

Timer

Block

Spec

Most of today’s verification is
performed at the chip level

Block-level testbench

FSM
Actions

Actions

Timer

FSM

Timer

Very little block-level
verification is performed

Unit or
Module FSM

EDPS 2003 Harry Foster

Prediction

In the future, we will augment our natural language forms of specification
with forms that are:

mathematically precise
verifiable
lend themselves to automation

Design and verification will become property-based

Multiple tools will operate on these properties
Synthesis, testbench generators, simulation assertions, functional coverage

Formal and dynamic verification will become tightly integrated
Each will leverage the strengths of the other

Property specification is the key ingredient of this revolution, whose end
result is improved verification

EDPS 2003 Harry Foster

Le
ve

ls
 o

f A
bs

tr
ac

tio
n

Hardware Verification Languages [1990’s]

Schematics

Boolean equations [Shannon’s revelation 1938]

Block Diagrams and Timing Charts [1940’s]

Register Equations [Reed 1952]

VHDL / Verilog [1980’s]

System / Architectural Languages [1990’s]

Register Transfer Languages [1960’s]

Assertion / Property Languages [2003]

Moving up level’s of abstraction
Design productivity increases
Communicating design intent
improves
Handle larger capacity
Analysis improves (HVL 10x)
Drives new technology!
Opens new markets!

The industry is raising the level of
abstraction once again by introducing the
assertion and property language
standards!

Specification and Notation Drives Innovation
Standards drive opportunities

The development of Register
Transfer Languages in the mid-
1960’s lead to the development of
synthesis.

However, it was the
standardization of VHDL/Verilog
in the early 1990’s that opened
new markets and helped drive
synthesis adoption.

EDPS 2003 Harry Foster

An assertion-based verification platform
Standards will drive opportunities

verifiable testplans
for example, executable functional coverage models, which help answer the question “what
functionality has not been exercised?”

exhaustive and semi-exhaustive formal property checking
for example, model checking and bounded-model checking)

dynamic property checking
for example, monitoring assertions in simulation for improved observability reducing debug time

testbench generation
leverage property specification to define expected input behavior (constraints) and output
behavior (assertions)

constraint-driven stimulus generation
based on interface properties (constraints)

assertion property synthesis
to address silicon observability challenges during chip bring-up in the lab—as well as HA
architectures for runtime analysis.

EDPS 2003 Harry Foster

Definition: property—a collection of logical and temporal
relationships between and among subordinate Boolean
expressions, sequential expressions, and other properties that
in aggregate represent a set of behaviors.

In general, a property describes design intent.
Note that properties can either be specified by the designer or
automatically extracted, based on structural analysis of the design
model.

What is a property?

EDPS 2003 Harry Foster

What is an assertion?

Definition: assertion—a statement that a given property
is required to hold within a specific design—and a
directive to verification tools to verify that it does hold.

Its sole purpose is to ensure during verification
consistency between the designer’s intention—and what
is created.

EDPS 2003 Harry Foster

PSL Assertion Language Structure

Boolean

Temporal

Verification

Modeling

EDPS 2003 Harry Foster

assert always (!(A & B)); // a and b are always mutually exclusive

Boolean layer

Temporal layer

Verification layer

PSL Assertion Language Structure

EDPS 2003 Harry Foster

design intent

Design Intent Challenge

functional
specification

How can we specify the design intent in a form that can be verified?

How can how can we know what has been specified has been verified?

RTL implementation

X

Was this
requirement
implemented?

EDPS 2003 Harry Foster

Properties and Functional Coverage

A property language can specify assertions
which monitor and report undesirable behavior simulation

or can be used as proof targets for a formal engine

A property language can specify functional coverage
which monitors and reports desirable behavior that must occur for the verification
process to be complete
theoretically could be used by a formal engine to determine if an intended behavior
is reachable—calculate a witness

On the sx1000 project at Hewlett-Packard, the coverage model was comprised
of over 14,000 functional coverage points. Analysis of the results revealed:

several key test generation features believed were enabled were actually disabled

helped identify specific functionality not exercised in any verification environment

for the first time—we knew exactly what random simulation was checking

90% were hit through standard verification effort—10% required directed test

EDPS 2003 Harry Foster

Functional coverage-transaction specification
A sequence describes a waveform

signal
holds 4 times

req

busy

gnt

{ req; busy[*4]; gnt }

EDPS 2003 Harry Foster

AMBA AHB Transaction Example

Advanced High-Performance Bus (AHB) protocol—supported by the
ARM Advanced Microcontroller Bus Architecture (AMBA)

AHB is a pipelined bus with all transfers taking at least two cycles to
complete

< A’s address phase > < B’s address phase >

< A’s data phase > < B’s data phase >

EDPS 2003 Harry Foster

sequence SERE_AHB_BURST_MODE_READ = {
{SERE_AHB_READ_FIRST}; {SERE_AHB_READ_NEXT}[*]

};

cover {SERE_AHB_BURST_MODE_READ};

AMBA AHB transaction example

EDPS 2003 Harry Foster

sequence SERE_AHB_SLAVE_RESPONSE = {
‘AHB_WAIT[*]; // (!hready && (hresp==‘OKAY))
{
{ ‘AHB_OKAY}

| { {!hready;hready} && {‘AHB_ERROR [*2]} }
| { {!hready;hready} && {‘AHB_SPLIT [*2]} }
| { {!hready;hready} && {‘AHB_RETRY [*2]} }

}
};

// slave response to the previous data in parallel with the master's
// asserting the control signals for the next address

sequence SERE_AHB_READ_FIRST = {
{SERE_AHB_SLAVE_RESPONSE} &&
{(‘AHB_FIRST_TRANS && ‘AHB_READ_INCR}[*]}

};

sequence SERE_AHB_READ_NEXT = {
{SERE_AHB_SLAVE_RESPONSE} &&
{
{(`AHB_NEXT_TRANS && ‘AHB_READ_INCR)[*]}

| {‘AHB_MASTER_BUSY[*]}
}

};

sequence SERE_AHB_BURST_MODE_READ = {
{SERE_AHB_READ_FIRST}; {SERE_AHB_READ_NEXT}[+]

};

cover {SERE_AHB_BURST_MODE_READ};

EDPS 2003 Harry Foster

sequence SERE_AHB_SLAVE_RESPONSE = {
‘AHB_WAIT[*]; // (!hready && (hresp==‘OKAY))
{
{ ‘AHB_OKAY}

| { {!hready;hready} && {‘AHB_ERROR [*2]} }
| { {!hready;hready} && {‘AHB_SPLIT [*2]} }
| { {!hready;hready} && {‘AHB_RETRY [*2]} }

}
};

// slave response to the previous data in parallel with the master's
// asserting the control signals for the next address

sequence SERE_AHB_READ_FIRST = {
{SERE_AHB_SLAVE_RESPONSE} &&
{(‘AHB_FIRST_TRANS && ‘AHB_READ_INCR)[*]}

};

sequence SERE_AHB_READ_NEXT = {
{SERE_AHB_SLAVE_RESPONSE} &&
{
{(`AHB_NEXT_TRANS && ‘AHB_READ_INCR)[*]}

| {‘AHB_MASTER_BUSY[*]}
}

};

sequence SERE_AHB_BURST_MODE_READ = {
{SERE_AHB_READ_FIRST}; {SERE_AHB_READ_NEXT}[+]

};

cover {SERE_AHB_BURST_MODE_READ};

EDPS 2003 Harry Foster

sequence SERE_AHB_SLAVE_RESPONSE = {
‘AHB_WAIT[*]; // (!hready && (hresp==‘OKAY))
{
{ ‘AHB_OKAY}

| { {!hready;hready} && {‘AHB_ERROR [*2]} }
| { {!hready;hready} && {‘AHB_SPLIT [*2]} }
| { {!hready;hready} && {‘AHB_RETRY [*2]} }

}
};

// slave response to the previous data in parallel with the master's
// asserting the control signals for the next address

sequence SERE_AHB_READ_FIRST = {
{SERE_AHB_SLAVE_RESPONSE} &&
{(‘AHB_FIRST_TRANS && ‘AHB_READ_INCR)[*]}

};

sequence SERE_AHB_READ_NEXT = {
{SERE_AHB_SLAVE_RESPONSE} &&
{
{(‘AHB_NEXT_TRANS && ‘AHB_READ_INCR)[*]}

| {‘AHB_MASTER_BUSY[*]}
}

};

sequence SERE_AHB_BURST_MODE_READ = {
{SERE_AHB_READ_FIRST}; {SERE_AHB_READ_NEXT}[+]

};

cover {SERE_AHB_BURST_MODE_READ};

EDPS 2003 Harry Foster

AMBA AHB Transaction Example

assert always {hready} |=> { SERE_AHB_BURST_MODE_READ
| SERE_AHB_BURST_MODE_WRITE
| SERE_AHB_SINGLE_READ
| SERE_AHB_SINGLE_WRITE
| SERE_AHB_INACTIVE
| SERE_AHB_RESET
};

PSL AHB valid transactions following the completion of any previous transaction

EDPS 2003 Harry Foster

Architecture

Block

RTL Module

System

Block
Integration

RTL Design

Architecture

Block

RTL Module

System

Block
Integration

RTL Design

Architecture

Block

RTL Module

System

Block
Integration

RTL Design

Levels of property specification
Top Down

Design
Bottom Up
Verification

Architecture

Block

RTL Module

System

Block
Integration

RTL Design

Architecture

Block

RTL Module

System

Block
Integration

RTL Design

EDPS 2003 Harry Foster

An RTL implementation level property
module fifo (clk, fifo_clr_n, fifo_reset_n,

put, // put strobe, active high
get, // get strobe, active high
data_in, data_out

);
// FIFO parameters

parameter fifo_width = `FIFO_WIDTH;

parameter fifo_depth = `FIFO_DEPTH;

parameter fifo_pntr_w = `FIFO_PNTR_W;

parameter fifo_cntr_w = `FIFO_CNTR_W;

input clk, fifo_clr_n, fifo_reset_n, put, get;

input [fifo_width-1:0] data_in;

output [fifo_width-1:0] data_out;

wire [fifo_width-1:0] data_out;

// FIFO itself

reg [fifo_width-1:0] fifo[fifo_depth-1:0];

// FIFO pointers

reg [fifo_pntr_w-1:0] top; // top

reg [fifo_pntr_w-1:0] btm; // bottom

reg [fifo_cntr_w-1:0] cnt; // count

Integer i;

always @(posedge clk or negedge fifo_clr_n)

begin

if (fifo_clr_n == 1'b0) begin

top <= {fifo_pntr_w {1'b0}};

btm <= {fifo_pntr_w {1'b0}};

cnt <= { fifo_cntr_w {1'b0}};

for (i=0; i<fifo_depth; i=i+1)

fifo[i] <= {fifo_width{1'b0}};

end

else if (fifo_reset_n == 1'b0) begin

top <= {fifo_pntr_w {1'b0}};

btm <= {fifo_pntr_w {1'b0}};

cnt <= { fifo_cntr_w {1'b0}};

end

else begin

case ({put, get})
2'b10 : // WRITE

if (cnt<fifo_depth) begin

fifo[top] <= data_in;

top <= top + 1;

cnt <= cnt + 1;

end

EDPS 2003 Harry Foster

// Assert that the FIFO cannot overflow
assert never ({put,get}==2'b10 && cnt==fifo_depth-1) @(posedge clk);

// Assert that the FIFO cannot underflow
assert never (get && cnt==0) @(posedge clk);

2'b01 : //READ
if(cnt>0) begin

fifo[btm] <= 0;

btm <= btm + 1;

cnt <= cnt - 1;

end

2'b11 : // WRITE & READ
begin

fifo[btm] <= 0;

fifo[top] <= data_in;

btm <= btm + 1;

top <= top + 1;

end

endcase

end

end // always

assign data_out = fifo[btm];

An RTL implementation level property

EDPS 2003 Harry Foster

// Assert that the FIFO cannot overflow
assert never ({put,get}==2'b10 && cnt==fifo_depth-1) @(posedge clk);

// Assert that the FIFO cannot underflow
assert never (get && cnt==0) @(posedge clk);

An RTL implementation level property

EDPS 2003 Harry Foster

Key features of an assertion

The previous example demonstrates three key features of
assertions:

1. Error detection,
2. Error isolation, and
3. Error notification.

EDPS 2003 Harry Foster

design intent

Design intent challenge

functional
specification

How can we specify the design intent in a form that can be verified?

How can we know whether what has been specified has been verified?

RTL implementation

X

intended,
specified,
implemented

EDPS 2003 Harry Foster

Design and verification will become property-based

Multiple tools will operate on these properties
Synthesis, testbench generators, simulation assertions, functional coverage

Formal and dynamic verification will become tightly integrated
Each will leverage the strengths of the other

Property specification is the key ingredient
required for assertion-based verification platform!

Conclusion

EDPS 2003 Harry Foster

Backup

EDPS 2003 Harry Foster

Assertion Effort Payback Claim

Assertions with formal
technology
(explore space missed by simulation)

Project Time / Effort

R
es

ul
ts

 /
B

ug
 R

at
e

Assertions with simulation
(based on multiple studies)

Up to 3%

50% Reduction in Debug

Simulation (NO assertions)Assertions during design
(start verification sooner!!)

EDPS 2003 Harry Foster

Assertions in real designs:

Kantrowitz and Noack [DAC 1996]

Taylor et at. [DAC 1998]

Assertion Monitors 34%
Cache Coherency Checkers 9%
Register File Trace Compare 8%
Memory State Compare 7%
End-of-Run State Compare 6%
PC Trace Compare 4%
Self-Checking Test 11%
Simulation Output Inspection 7%
Simulation hang 6%
Other 8%

Assertion Monitors 25%
Register Miscompare 22%
Simulation "No Progress” 15%
PC Miscompare 14%
Memory State Miscompare 8%
Manual Inspection 6%
Self-Checking Test 5%
Cache Coherency Check 3%
SAVES Check 2%

Do Assertions Really Work?

34% of all bugs were found were identified by assertions on DEC
Alpha 21164 project
[Kantrowitz and Noack DAC 1996]

17% of all bugs were found were identified by assertions on Cyrix
M3(p1) project.
[Kronik '98]

25% of all bugs were found were identified by assertions on DEC
Alpha 21264 project.
[Taylor et at.DAC 1998]

50% of all bugs found were identified by assertions on Cyrix M3(p2)
project
[Kronik ‘98]

85% of all bugs were found using over 4000 assertions on HP
[Foster and Coelho HDLCon 2000]

