
Building Design Process in a Startup Company

David A. Gates

ATI Research Silicon Valley, Inc., Santa Clara, CA, USA
gates@ati.com

Abstract

A startup company must build its design process up from
nothing into a complete system in a very short period of
time. However, a startup design team is confronted with
several other challenges as well. The area of functional
verification is one where complete design automation is
essential to first-time design success. Built from scratch,
the verification environment is gradually brought under
fully automated control. DV, a verification flow manager,
is the product of one such progression. Its software
requirements and how it meets them are described.

1 Introduction

A startup ASIC design company has one big
dis advantage and one big advantage when it comes to
design process: the absence of one. Lacking a design
process, a startup must build or acquire all the necessary
pieces to complete a design. This can be an expensive
and time -consuming proposition. On the other hand, the
new company is not saddled with the compromises and
tradeoffs made as a design process evolves to become the
standard design environment of an established company.
The startup starts with a clean slate, limited only by the
experience and creativity of its early employees. The
challenge during the startup phase is to build a design
process that allows the company to get its first product
out the door on time, while at the same time providing a
solid basis for future design cycles.

In this paper, we describe the challenges facing a startup
company that affect the way it goes about completing an
ASIC design. These challenges place constraints on the
way the design process evolves. In particular, focus is
placed on the functional verification process, an area
where comprehensive design automation is essential to
project success. Evolution of the design process through
various stages shows how an initially chaotic situation is
gradually brought under the control of increasing
automation. The end result of this evolution is a
verification flow manager [1] that meets the requirements
of a startup company. The architecture, implementation
and use of such a tool called DV (for Design
Verification) are described. Details and examples of how
DV meets its requirements are presented.

2 Startup Challenges

Few, if any, startups choose to attack an entrenched
competitor using commonly available means. Instead, a
startup’s goal is generally to introduce a new product or
technology before any of its competitors. Such
competitors can take the form of both other startups with
similar goals and well-established companies working to
improve their existing products.

2.1 Fluid Goals

A startup relies on its small size and lack of bureaucracy
to adapt quickly to changing market conditions. It can
also change goals quickly when faced with an
insurmountable technical problem.

The design process must be able to tolerate large swings
in the technical direction of the venture. For example, the
team may be initially committed to a new technology
node, only to realize that using the current node is the
only way to hit a market window. A design process that
takes weeks or months to reengineer could cause the
startup to lose its competitive advantage.

2.2 Time Pressure

Quick reaction time is a response to the extreme time
pressure startups face. If a competitor beats the startup to
market, the most likely outcome is that the startup will
cease to exist. Employees work long hours to
compensate for the limited capital and personnel
resources of the startup.

Time pressure impedes the development of a consistent
and repeatable process. When a tradeoff is required
between development time and process quality, time will
generally win out. It is much easier for a weary engineer
to focus on solving the problem at hand than to think
about generalizing the solution. However, a design
environment can mitigate this problem by capturing the
design process as it develops. This captured form can
then be reviewed and updated to establish standard
practices.

2.3 Diverse Workforce

The engineering team has no doubt been recently
assembled by hiring experienced individuals from
different backgrounds. Each engineer brings their own
training and experience to bear on the design process.
Each will have strengths in some areas and weaknesses in

others. By drawing on the experiences of all engineers,
the design process of the new organization can be built on
the best practices of the group.

In some cases, two or more equally valid methods will be
available. It may make sense to allow both to coexist, to
choose one over the other outright, or to give each a trial
to determine the preferred method. For example, in the
first case, engineers working on different blocks of a
design can use techniques most familiar to them to
complete their designs. Forcing a common design
process on everyone could introduce inefficiency that
would lengthen overall development time. Instead, an
extensible design environment is needed to accommodate
process diversity.

2.4 The Leading Edge

Often the team will be facing technological hurdles on
the leading edge of ASIC design. Innovative products
have specifications that require the latest process node, a
larger, faster ASIC, exotic process technology or all of
the above.

In light of this, the design process needs to be able to
adapt to handle these challenges. New tools and flows
will be needed that no member of the team has dealt with
before. It may be necessary to experiment with different
solutions before an acceptable one is found. In addition,
engineering teams working in parallel may end up
solving the same problem in different ways. Only a
flexible design environment will be able to cope with
these issues.

3 Functional Verification

One area of ASIC design where complete design
automation is essential is functional verification. Full
verification of a complex, multi-million gate ASIC
requires thousands of directed and random tests to be run.
The majority of these tests are aimed at verifying the
RTL representation of an ASIC design.

3.1 Example Verification Flow

Figure 1 shows a simple flow for testing an RTL design.
It is used for examples in later sections. Common
infrastructure is compiled first for use by later steps. The
RTL source is compiled into a simulator. In parallel, a
test stimulus generator is compiled and run to generate
input vectors for simulation. During simulation, the input
vectors are fed in and output results are captured. These
results are then checked for correctness against ‘golden’
results. The golden results are assumed to be correct and
can be obtained in a variety of ways.

3.2 Automation of Verification

Verification is performed at both the individual block
level and at the chip level where all blocks have been
integrated together. The exact details of how to run tests
at each of these levels are different and should be hidden

from the designer as much as possible. This makes it
easier for the engineer to focus on design and debug of a
block, yet still be able to test the block in context.

 Abstracting the test process also helps when running test
suite regressions. It is desirable to have a common
environment that can run one test at a time interactively
or entire test suites in the background. Batch queuing
systems such as LSF [2] make the latter task feasible.

4 Design Process Evolution

When developing a new design environment, the design
process evolves through several stages on a path towards
comprehensive automation. In the following it is
assumed that the team is already following certain
common practices for good design: use of detailed
specifications, well-documented code, source-code
control with individual sandboxes for each engineer, and
others [3].

4.1 Piecemeal Automation

Initially, individual pieces of the verification environment
are developed in isolation. Engineers use commonly
available tools such as Make, Perl, Python and TCL to
automate building of the various components. The
choice of which to use for each task is left up to the
engineers, who make their decisions based on familiarity
with a given tool or a desire to learn a new one. The net
result is that the design environment is covered by a
group of isolated areas of automation.

Golden
Results

Compile
Stimulus
Generator

Compile
 Simulator

Generate
Stimulus

Simulator Generator

Stimulus
Run

Simulator

Sim
Results

Check
Results

Make
Libraries

Libraries

Figure 1: Example Flow

4.2 Manual Flows

In the next phase, engineers develop ad hoc flows to
build multiple sections of the sandbox. For example, the
following list might be used to run a simple flow:

Note that this flow is a typical mix of different
automation tools used at different steps. Initially, the
flow is not fully automated because the complete list of
steps needed is being discovered by trial and error. Recall
that it is likely that no one person understands the
complete system, since the pieces have been developed
by several people working independently.

As an engineer makes changes to the sandbox such as
modifying RTL source, fixing a library bug, or extending
a test case, they must rerun parts of the flow to bring the
sandbox up-to-date. In many cases, it may be so difficult
to determine which pieces are out-of-date, that an
engineer will choose to rerun all of them. The alternative
is to risk working with an inconsistent sandbox which
contains obscure, difficult-to-trace bugs.

One advantage manual flows have is being easy to debug,
since the steps are run one at a time and the output of
each step is immediately available for inspection.

4.3 Hard-coded Scripts

In short order, typical engineers become frustrated with
the tedium of manually running through such flows over
and over. In response, a hard-coded wrapper script is
written that runs through the entire flow.

If the flow is simple enough, a target in a Makefile may
suffice:

However, in most situations, the dependency / update
structure of Make interferes with efficient
implementation, and a scripting language is used instead.

Running multiple steps automatically one after another
can make it difficult to determine which output belongs
to which step of the flow. For example, while errors will
generally stop flow execution, mere warnings will only
show up as messages embedded in the output stream.
Working around this problem requires extra time and
effort that might be skipped when developing many hard-
coded scripts.

4.4 Generalized Scripts

Hard-coded scripts have the disadvantage of being very
inflexible. Although they can be parameterized to run
different instances of the same kind of test, a new script
must be written for each major variation of a flow. Users
must either learn the details for running each kind of test,
or a wrapper must be written that calls the appropriate
script as a subroutine.

What is desirable is a generalized form of scripting that
combines the labor-saving of hard-coded scripts, the
observability of manual execution and the flexibility to
integrate new flows that neither provides. In the next
section, we describe a tool called DV that has these three
properties and more.

5 DV Architecture

The requirements for a functional verification tool
meeting the special needs of a startup design team are
summarized as follows:

• Flexible: can accommodate multiple flows and
levels of design detail.

• Extensible: users can define new flows
applicable to a particular part of the design.

• Formatted: test cases must be stored in a way
that users can maintain.

• Automated: can run one or many tests
interactively or as a batch.

• Observable: can easily follow the flow of
control to spot problems.

• Modifiable : can be updated while in use as a
project progresses.

DV (short for Design Verification) is a tool developed to
meet these requirements. The architecture of DV is
shown in Figure 2.

runtest1:
 # Make libraries.
 cd $TOP/lib && make
 # Compile stimulus generator.
 cd $TOP/test/test1 && make test1
 ...

Make libraries.
1 > cd $TOP/lib && make
Compile stimulus generator.
2 > cd $TOP/test/src && make gen
Compile simulator.
3 > bld_sim.pl $TOP/sim/c1.conf
Generate stimulus.
4 > cd $TOP/test && src/gen t1
Run simulator.
5 > run_sim.pl –test t1 –conf c1
Check results.
6 > chk_sim.csh –test t1 –conf c1

Figure 2: DV Architecture

The architecture is divided into two major pieces: one for
describing tests and one for executing tests. Integral to
the architecture is a database language (the DV language)
that captures the testing process in an automatable way.
This language is designed to make it easy for users to
describe hundreds of tests for each block of a design and
to account for the individual personalities of the blocks.
A parser / translator converts the database for each block
into a binary format that can be used during execution.
Manual input from the user selects which tests to run and
how to run them. The main control engine then extracts
test information from the internal database and passes
tests to the execution engine. The execution engine then
interacts directly with the host system to run the flow or
with an external batch system that manages resources
throughout a network. The execution engine also
interacts with the internal databas e to obtain parameters
for the individual steps of a flow.

5.1 DV Language Descriptions

The DV language can describe four different kinds of
things in the test database. They are configurations,
tools, flows and tests.

Configurations describe the structure of the design under
test. They define which source to include for blocks and
for special stimulus and monitoring code. The
configuration description for the example might look like
this:

Each configuration has a name followed by a list of
component / view pairs. Users can define multiple
configurations in the test database. For example, during
gatelevel testing, the original configuration can be
modified to use a synthesized netlist:

Here a copy of the RTL configuration has been used as a
template for the netlist configuration. The new
configuration then redefines the view for component
‘block1’. The ability to derive things from pre -existing
ones is a powerful mechanism for organizing a test suite.

Tools and flows describe the actions that should be taken
when running a test. A tool is a detailed description of a
job defining where and how to run it. Each tool must
specify a directory to run in and a command to run. In
addition, most tools need arguments to control the
command’s behavior. The descriptions for two of the
tools from the example would look like this:

Notice that the ‘chk_sim’ tool has been parameterized by
using DV variables so that it can be used for different
tests. The ‘args’ property employs one of several
operators that can be used to edit an existing property
value.

A flow is a list of tools defining the order to run them in.
Sequential execution, parallel execution and a limited
form of branching are allowed. A flow can fork and
rejoin as needed, and can call other flows as subroutines.
The complete flow for the example is:

// Describe tools.
tool make_lib
 dir = $TOP/lib
 cmd = make
endtool

tool chk_sim
 dir = $TOP/test
 cmd = chk_sim.csh
 args = -test $test
 args += –conf $conf
endtool

// Derived configuration.
conf c2 : c1 +=
 block1 = netlist
endconf

// Describe structure.
conf c1
 block1 = rtl
 block1_mon = live
endconf

DV Language
Test Database

User Test
Selection

Main Control
Engine

Parser /
Translator

Execution
Engine

Batch
System

Internal
Database

Description

Execution

Nested parallel / sequential blocks are used to identify
that the generator can be built and run while the simulator
is also being compiled. Due to the complexity of its
syntax, flows cannot be derived from templates or edited
the same way configurations and tools can.

Finally, tests are used to tie structure to action to form a
complete test case. The example test description looks
like this:

A configuration provides the what; a flow and its tools
provide the how and where. An additional property
‘when’ is used as a key for selecting tests to run as part of
regressions. A user can define many such keys as a way
of organizing the complete set of tests into related groups.

5.2 DV Execution

The DV tool reads and executes tests from the database
as selected by the user. The user chooses which tests to
run via command-line options. Tests are organized into
blocks, with each block database typically containing the
tests needed to validate the design block of the same
name. The user specifies a block and then a list of tests
to run for that block. Alternatively, the user can supply a
selection expression which is used to query the contents
of the database to find tests that satisfy the expression:

The main control engine parses the command-line
options, assembles a final list of tests to run by consulting
the database, and then sends the tests one by one to the
execution engine.

The execution engine reads the contents of a test’s flow
and executes the tools in the order encountered.
Procedures for both interactive or batch execution of
tools are provided. Special care is taken to avoid running
the same tool more than once with the same context.

6 DV Implementation and Use Experience

The DV architecture has been implemented as a pair of
cooperating programs running on Sun Solaris and
Microsoft Windows NT. The user interface, control and
execution engines and the internal database are written in
approximately 4000 lines of Perl. A scripting language
was chosen over a systems programming language such
as C/C++ in order to enable rapid development and
evolution of the tool. However, for speed and
implementation efficiency reasons, the parser / translator
was written as a 1000 line lex / yacc / C program. It
converts the DV database to a Perl script that is then
invoked by the control engine to set up the internal
database. The language description is written in a loose
way so that new properties can be attached to the
database objects without having to change the language.
This makes it easier to implement new features in the Perl
program. On Solaris, the execution engine has been
interfaced to the LSF batch queuing system to provide
parallel execution support.

The original DV implementation was used to verify the
3D graphics sections of the Flipper ASIC, the SOC core
of the Nintendo GAMECUBE console. While initially
targeted at block-level RTL functional verification, the
DV databases were extended by adding configurations
and flows to support chip-level verification as well as
gate-level verification.

6.1 Phased Introduction

Many of the features of the language and tool were not
part of the initial deployment. The requirements for the
tool were extended on an ongoing basis as the Flipper
project progressed. The basic interactive execution
capability was available at rollout, and engineers started
using the tool. A major update to add batch execution
mode was needed as more tests were written. Parallel
execution was added in order to improve performance
when using the batch system. In order to support
multiple regressions, the expression-based database query
system was introduced. Deployment of new features was
relatively painless because of DV’s plain-text database
format and the Perl implementation of the engines.

6.2 Process Capture

One of the common drawbacks of verification scripts is a
proliferation of arguments and environment variables that
modify the behavior of individual tools. This makes it
difficult to transfer verification to other engineers, since
one must also pass along these custom settings. DV
resists this approach by encouraging users to write a short

// Describe flow.
flow default
 make_lib
 par
 seq
 make_gen
 run_gen
 endseq
 bld_sim
 endpar
 run_sim
 chk_sim
endflow

// Describe test.
test t1
 conf = c1
 flow = default
 when = daily
endtest

Select one or two tests by name.
1 > dv block1 t1 t2
Select test with an expression.
2 > dv block1 –where when=daily

DV database that modifies the default behavior. Here is
an example of this feature used to enable waveform
dumping during simulation of the example test:

The details of how to enable dumping are encapsulated
inside this short database file. The default test
description is retrieved and modified by this script. Test-
specific tool arguments are used by the execution engine
to temporarily modify the tool’s execution. It is also
possible instead to modify the default tool descriptions so
that a set of tool changes applies to all tests.

6.3 Finding Patterns

One of the benefits of capturing tests in a database is the
ability to search for patterns in the database. Identifying
patterns can influence future efforts in two ways. First,
awkward patterns signal a deficiency in the scope of the
database language. By analyzing such a pattern,
modifications can be made to the language to make it
simpler to express the pattern. For example, early DV
databases contained the following pattern:

This method for defining a series of related tests was
quite common. However, because each new test requires
four lines in the database, it is cumbersome to add a new
test or maintain large sets of tests. In response, the
language and tool were modified to allow a single-line
format for this pattern:

The matching ‘end’ keyword can be omitted when
modifying a single property, and the alias ‘args’ has been

introduced for the commonly occurring
‘tool.test_run.args’ property.

Second, good patterns can be documented and
communicated to other members of the team. For
example, the following pattern can be used to derive a
series of tests of escalating functional complexity:

Each new test is derived by copying its predecessor and
enabling a new function. When fed input from a random
generator, this series can test the interactions of each new
feature against all previous ones.

7 Conclusions

A verification flow management tool called DV has been
developed as a natural extension of the methods used to
bring a fragmented design environment under control.
The main benefit of such a tool is the ability of
verification engineers to automatically run the thousands
of tests required to ensure that an ASIC design is bug-
free. The DV tool is architected on an underlying model
of design verification that encompasses both the design
structure and the verification flow. At the same time, its
implementation is guided by the constraints of a startup
company in a way that allows it to evolve with the
company. By capturing the verification process in an
executable format, it has become a foundation tool for
ASIC design projects.

8 Acknowledgments

The author would like to thank the ArtX/ATI Flipper
ASIC development team, the first users of the DV
verification tool described in this paper. Their
contributions in the form of ideas and idioms were
invaluable to its early development.

9 References

[1] J.B. Brockman, A Schema-Based Approach to CAD
Task Management. Ph.D. Thesis, Carnegie Mellon
University, Department of Electrical and Computer
Engineering (Report CMUCAD-93-01), Jun. 1992.

[2] Platform Computing, Inc., Platform LSF 5 Product
Brochure, URL: http://www.platform.com

[1] L. Bening and H. Foster, Principles of Verifiable
RTL Design. Kluwer Academic Press, 2001.

// Base test.
test t =
 conf = c1
 flow = default
endtest

// First derived test.
test t1 : t +=
 tool.test_run.args = "-obj 1"
endtest

// Second derived test.
test t2 : t +=
 tool.test_run.args = "-obj 2"
endtest

test t1 +=
 tool.bld_sim.args += -pli_waves
 tool.run_sim.args += -wave_dump
endtest

// Derived tests.
test t1 : t += args = "-obj 1"
test t2 : t += args = "-obj 2"

// Escalating difficulty series.
test t1 : t += args = -func 1
test t2 : t1 += args += -func 2
test t3 : t2 += args += -func 3

