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Abstract 
 
A startup company must build its design process up from 
nothing into a complete system in a very short period of 
time.  However, a startup design team is confronted with 
several other challenges as well.  The area of functional 
verification is one where complete design automation is 
essential to first-time design success. Built  from scratch, 
the verification environment is gradually brought under 
fully automated control. DV, a verification flow manager, 
is the product of one such progression.  Its software 
requirements and how it meets them are described. 

 
1 Introduction 

A startup ASIC design company has one big 
dis advantage and one big advantage when it comes to 
design process: the absence of one.  Lacking a design 
process, a startup must build or acquire all the necessary 
pieces to complete a design.  This can be an expensive 
and time -consuming proposition.  On the other hand, the 
new company is not saddled with the compromises and 
tradeoffs made as a design process evolves to become the 
standard design environment of an established company.  
The startup starts with a clean slate, limited only by the 
experience and creativity of its early employees.  The 
challenge during the startup phase is to build a design 
process that allows the company to get its first product 
out the door on time, while at the same time providing a 
solid basis for future design cycles. 

In this paper, we describe the challenges facing a startup 
company that affect the way it goes about completing an 
ASIC design.  These challenges place constraints on the 
way the design process evolves.  In particular, focus is 
placed on the functional verification process, an area 
where comprehensive design automation is essential to 
project success.  Evolution of the design process through 
various stages shows how an initially chaotic situation is 
gradually brought under the control of increasing 
automation.  The end result of this evolution is a 
verification flow manager [1] that meets the requirements 
of a startup company.  The architecture, implementation 
and use of such a tool called DV (for Design 
Verification) are described.  Details and examples of how 
DV meets its requirements are presented. 

2 Startup Challenges 

Few, if any, startups choose to attack an entrenched 
competitor using commonly available means.  Instead, a 
startup’s goal is generally to introduce a new product or 
technology before any of its competitors.  Such 
competitors can take the form of both other startups with 
similar goals and well-established companies working to 
improve their existing products.   

2.1 Fluid Goals 

A startup relies on its small size and lack of bureaucracy 
to adapt quickly to changing market conditions.  It can 
also change goals quickly when faced with an 
insurmountable technical problem. 

The design process must be able to tolerate large swings 
in the technical direction of the venture.  For example, the 
team may be initially committed to a new technology 
node, only to realize that using the current node is the 
only way to hit a market window.  A design process that 
takes weeks or months to reengineer could cause the 
startup to lose its competitive advantage. 

2.2 Time Pressure 

Quick reaction time is a response to the extreme time 
pressure startups face.  If a competitor beats the startup to 
market, the most likely outcome is that the startup will 
cease to exist.  Employees work long hours to 
compensate for the limited capital and personnel 
resources of the startup. 

Time pressure impedes the development of a consistent 
and repeatable process.  When a tradeoff is required 
between development time and process quality, time will 
generally win out.  It is much easier for a weary engineer 
to focus on solving the problem at hand than to think 
about generalizing the solution.  However, a design 
environment can mitigate this problem by capturing the 
design process as it develops.  This captured form can 
then be reviewed and updated to establish standard 
practices. 

2.3 Diverse Workforce 

The engineering team has no doubt been recently 
assembled by hiring experienced individuals from 
different backgrounds.  Each engineer brings their own 
training and experience to bear on the design process.  
Each will have strengths in some areas and weaknesses in 



others. By drawing on the experiences of all engineers, 
the design process of the new organization can be built on 
the best practices of the group. 

In some cases, two or more equally valid methods will be 
available.  It may make sense to allow both to coexist, to 
choose one over the other outright, or to give each a trial 
to determine the preferred method.  For example, in the 
first case, engineers working on different blocks of a 
design can use techniques most familiar to them to 
complete their designs.  Forcing a common design 
process on everyone could introduce inefficiency that 
would lengthen overall development time.  Instead, an 
extensible design environment is needed to accommodate 
process diversity. 

2.4 The Leading Edge 

Often the team will be facing technological hurdles on 
the leading edge of ASIC design.  Innovative products 
have specifications that require the latest process node, a 
larger, faster ASIC, exotic process technology or all of 
the above. 

In light of this, the design process needs to be able to 
adapt to handle these challenges.  New tools and flows 
will be needed that no member of the team has dealt with 
before.  It may be necessary to experiment with different 
solutions before an acceptable one is found.  In addition, 
engineering teams working in parallel may end up 
solving the same problem in different ways.  Only a 
flexible design environment will be able to cope with 
these issues. 

3 Functional Verification 

One area of ASIC design where complete design 
automation is essential is functional verification.  Full 
verification of a complex, multi-million gate ASIC 
requires thousands of directed and random tests to be run.  
The majority of these tests are aimed at verifying the 
RTL representation of an ASIC design. 

3.1 Example Verification Flow 

Figure 1 shows a simple flow for testing an RTL design.  
It is used for examples in later sections.  Common 
infrastructure is compiled first for use by later steps.  The 
RTL source is compiled into a simulator. In parallel, a 
test stimulus generator is compiled and run to generate 
input vectors for simulation.  During simulation, the input 
vectors are fed in and output results are captured.  These 
results are then checked for correctness against ‘golden’ 
results.  The golden results are assumed to be correct and 
can be obtained in a variety of ways. 

3.2 Automation of Verification 

Verification is performed at both the individual block 
level and at the chip level where all blocks have been 
integrated together.  The exact details of how to run tests 
at each of these levels are different and should be hidden 

from the designer as much as possible.  This makes it 
easier for the engineer to focus on design and debug of a 
block, yet still be able to test the block in context. 

 Abstracting the test process also helps when running test 
suite regressions.  It is desirable to have a common 
environment that can run one test at a time interactively 
or entire test suites in the background.  Batch queuing 
systems such as LSF [2] make the latter task feasible. 

4 Design Process Evolution 

When developing a new design environment, the design 
process evolves through several stages on a path towards 
comprehensive automation.  In the following it is 
assumed that the team is already following certain 
common practices for good design: use of detailed 
specifications, well-documented code, source-code 
control with individual sandboxes for each engineer, and 
others [3]. 

4.1 Piecemeal Automation 

Initially, individual pieces of the verification environment 
are developed in isolation.  Engineers use commonly 
available tools such as Make, Perl, Python and TCL to 
automate building of the various components.  The 
choice of which to use for each task is left up to the 
engineers, who make their decisions based on familiarity 
with a given tool or a desire to learn a new one.  The net 
result is that the design environment is covered by a 
group of isolated areas of automation. 
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Figure 1: Example Flow 



4.2 Manual Flows  

In the next phase, engineers develop ad hoc flows to 
build multiple sections of the sandbox.  For example, the 
following list might be used to run a simple flow: 

  
Note that this flow is a typical mix of different 
automation tools used at different steps.  Initially, the 
flow is not fully automated because the complete list of 
steps needed is being discovered by trial and error. Recall 
that it is likely that no one person understands the 
complete system, since the pieces have been developed 
by several people working independently. 

As an engineer makes changes to the sandbox such as 
modifying RTL source, fixing a library bug, or extending 
a test case, they must rerun parts of the flow to bring the 
sandbox up-to-date.  In many cases, it may be so difficult 
to determine which pieces are out-of-date, that an 
engineer will choose to rerun all of them.  The alternative 
is to risk working with an inconsistent sandbox which 
contains obscure, difficult-to-trace bugs. 

One advantage manual flows have is being easy to debug, 
since the steps are run one at a time and the output of 
each step is immediately available for inspection. 

4.3 Hard-coded Scripts 

In short order, typical engineers become frustrated with 
the tedium of manually running through such flows over 
and over.  In response, a hard-coded wrapper script is 
written that runs through the entire flow. 

If the flow is simple enough, a target in a Makefile may 
suffice: 

 

However, in most situations, the dependency / update 
structure of Make interferes with efficient 
implementation, and a scripting language is used instead. 

Running multiple steps automatically one after another 
can make it difficult to determine which output belongs 
to which step of the flow.  For example, while errors will 
generally stop flow execution, mere warnings will only 
show up as messages embedded in the output stream. 
Working around this problem requires extra time and 
effort that might be skipped when developing many hard-
coded scripts. 

4.4 Generalized Scripts 

Hard-coded scripts have the disadvantage of being very 
inflexible.  Although they can be parameterized to run 
different instances of the same kind of test, a new script 
must be written for each major variation of a flow.  Users 
must either learn the details for running each kind of test, 
or a wrapper must be written that calls the appropriate 
script as a subroutine. 

What is desirable is a generalized form of scripting that 
combines the labor-saving of hard-coded scripts, the 
observability of manual execution and the flexibility to 
integrate new flows that neither provides.  In the next 
section, we describe a tool called DV that has these three 
properties and more. 

5 DV Architecture 

The requirements for a functional verification tool 
meeting the special needs of a startup design team are 
summarized as follows: 

• Flexible: can accommodate multiple flows and 
levels of design detail. 

• Extensible: users can define new flows 
applicable to a particular part of the design. 

• Formatted: test cases must be stored in a way 
that users can maintain. 

• Automated: can run one or many tests 
interactively or as a batch. 

• Observable: can easily follow the flow of 
control to spot problems. 

• Modifiable : can be updated while in use as a 
project progresses. 

 
DV (short for Design Verification) is a tool developed to 
meet these requirements.  The architecture of DV is 
shown in Figure 2. 

runtest1: 
    # Make libraries. 
    cd $TOP/lib && make 
    # Compile stimulus generator. 
    cd $TOP/test/test1 && make test1 
    ...  

# Make libraries. 
1 > cd $TOP/lib && make 
# Compile stimulus generator. 
2 > cd $TOP/test/src && make gen 
# Compile simulator. 
3 > bld_sim.pl $TOP/sim/c1.conf 
# Generate stimulus. 
4 > cd $TOP/test && src/gen t1 
# Run simulator. 
5 > run_sim.pl –test t1 –conf c1 
# Check results. 
6 > chk_sim.csh –test t1 –conf c1 



 

Figure 2: DV Architecture 

 
The architecture is divided into two major pieces: one for 
describing tests and one for executing tests.  Integral to 
the architecture is a database language (the DV language) 
that captures the testing process in an automatable way.  
This language is designed to make it easy for users to 
describe hundreds of tests for each block of a design and 
to account for the individual personalities of the blocks.  
A parser / translator converts the database for each block 
into a binary format that can be used during execution.  
Manual input from the user selects which tests to run and 
how to run them.  The main control engine then extracts 
test information from the internal database and passes 
tests to the execution engine.  The execution engine then 
interacts directly with the host system to run the flow or 
with an external batch system that manages resources 
throughout a network.  The execution engine also 
interacts with the internal databas e to obtain parameters 
for the individual steps of a flow. 

5.1 DV Language Descriptions 

The DV language can describe four different kinds of 
things in the test database.  They are configurations, 
tools, flows and tests. 

Configurations describe the structure of the design under 
test.  They define which source to include for blocks and 
for special stimulus and monitoring code.  The 
configuration description for the example might look like 
this:  

  

Each configuration has a name followed by a list of 
component / view pairs.  Users can define multiple 
configurations in the test database.  For example, during 
gatelevel testing, the original configuration can be 
modified to use a synthesized netlist: 

 

Here a copy of the RTL configuration has been used as a 
template for the netlist configuration.  The new 
configuration then redefines the view for component 
‘block1’.  The ability to derive things from pre -existing 
ones is a powerful mechanism for organizing a test suite. 

Tools and flows describe the actions that should be taken 
when running a test.  A tool is a detailed description of a 
job defining where and how to run it.  Each tool must 
specify a directory to run in and a command to run.  In 
addition, most tools need arguments to control the 
command’s behavior.  The descriptions for two of the 
tools from the example would look like this: 

 

Notice that the ‘chk_sim’ tool has been parameterized by 
using DV variables so that it can be used for different 
tests.  The ‘args’ property employs one of several 
operators that can be used to edit an existing property 
value. 

A flow is a list of tools defining the order to run them in.  
Sequential execution, parallel execution and a limited 
form of branching are allowed.  A flow can fork and 
rejoin as needed, and can call other flows as subroutines.  
The complete flow for the example is: 

// Describe tools. 
tool make_lib 
  dir = $TOP/lib 
  cmd = make 
endtool 
 
tool chk_sim 
  dir = $TOP/test 
  cmd = chk_sim.csh 
  args  = -test $test 
  args += –conf $conf 
endtool 

// Derived configuration. 
conf c2 : c1 += 
  block1 = netlist 
endconf 

// Describe structure. 
conf c1 
  block1 = rtl 
  block1_mon = live 
endconf 
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Nested parallel / sequential blocks are used to identify 
that the generator can be built and run while the simulator 
is also being compiled.  Due to the complexity of its 
syntax, flows cannot be derived from templates or edited 
the same way configurations and tools can. 

Finally, tests are used to tie structure to action to form a 
complete test case.  The example test description looks 
like this: 

 

A configuration provides the what; a flow and its tools 
provide the how and where. An additional property 
‘when’ is used as a key for selecting tests to run as part of 
regressions.  A user can define many such keys as a way 
of organizing the complete set of tests into related groups. 

5.2 DV Execution 

The DV tool reads and executes tests from the database 
as selected by the user.  The user chooses which tests to 
run via command-line options.  Tests are organized into 
blocks, with each block database typically containing  the 
tests needed to validate the design block of the same 
name.  The user specifies a block and then a list of tests 
to run for that block.  Alternatively, the user can supply a 
selection expression which is used to query the contents 
of the database to find tests that satisfy the expression: 

 
 
The main control engine parses the command-line 
options, assembles a final list of tests to run by consulting 
the database, and then sends the tests one by one to the 
execution engine. 

The execution engine reads the contents of a test’s flow 
and executes the tools in the order encountered.  
Procedures for both interactive or batch execution of 
tools are provided. Special care is taken to avoid running 
the same tool more than once with the same context. 

6 DV Implementation and Use Experience 

The DV architecture has been implemented as a pair of 
cooperating programs running on Sun Solaris and 
Microsoft Windows NT.  The user interface, control and 
execution engines and the internal database are written in 
approximately 4000 lines of Perl.  A scripting language 
was chosen over a systems programming language such 
as C/C++ in order to enable rapid development and 
evolution of the tool.  However, for speed and 
implementation efficiency reasons, the parser / translator 
was written as a 1000 line lex / yacc / C program.  It 
converts the DV database to a Perl script that is then 
invoked by the control engine to set up the internal 
database.  The language description is written in a loose 
way so that new properties can be attached to the 
database objects without having to change the language.  
This makes it easier to implement new features in the Perl 
program.  On Solaris, the execution engine has been 
interfaced to the LSF batch queuing system to provide 
parallel execution support. 

The original DV implementation was used to verify the 
3D graphics sections of the Flipper ASIC, the SOC core 
of the Nintendo GAMECUBE console.  While initially 
targeted at block-level RTL functional verification, the 
DV databases were extended by adding configurations 
and flows to support chip-level verification as well as 
gate-level verification.   

6.1 Phased Introduction 

Many of the features of the language and tool were not 
part of the initial deployment.  The requirements for the 
tool were extended on an ongoing basis as the Flipper 
project progressed.  The basic interactive execution 
capability was available at rollout, and engineers started 
using the tool.  A major update to add batch execution 
mode was needed as more tests were written.  Parallel 
execution was added in order to improve performance 
when using the batch system.  In order to support 
multiple regressions, the expression-based database query 
system was introduced.  Deployment of new features was 
relatively painless because of DV’s plain-text database 
format and the Perl implementation of the engines. 

6.2 Process Capture 

One of the common drawbacks of verification scripts is a 
proliferation of arguments and environment variables that 
modify the behavior of individual tools.  This makes it  
difficult to transfer verification to other engineers, since 
one must also pass along these custom settings.  DV 
resists this approach by encouraging users to write a short 

// Describe flow. 
flow default 
  make_lib 
  par 
    seq 
      make_gen 
      run_gen 
    endseq 
    bld_sim 
  endpar 
  run_sim 
  chk_sim 
endflow 

// Describe test. 
test t1 
  conf = c1 
  flow = default 
  when = daily 
endtest 

# Select one or two tests by name. 
1 > dv block1 t1 t2 
# Select test with an expression. 
2 > dv block1 –where when=daily 



DV database that modifies the default behavior.  Here is 
an example of this feature used to enable waveform 
dumping during simulation of the example test: 

 
The details of how to enable dumping are encapsulated 
inside this short database file.  The default test 
description is retrieved and modified by this script.  Test-
specific tool arguments are used by the execution engine 
to temporarily modify the tool’s execution.  It is also 
possible instead to modify the default tool descriptions so 
that a set of tool changes applies to all tests. 

6.3 Finding Patterns 

One of the benefits of capturing tests in a database is the 
ability to search for patterns in the database.  Identifying 
patterns can influence future efforts in two ways.  First, 
awkward patterns signal a deficiency in the scope of the 
database language.  By analyzing such a pattern, 
modifications can be made to the language to make it 
simpler to express the pattern.  For example, early DV 
databases contained the following pattern: 

 
This method for defining a series of related tests was 
quite common.  However, because each new test requires 
four lines in the database, it is cumbersome to add a new 
test or maintain large sets of tests.  In response, the 
language and tool were modified to allow a single-line 
format for this pattern:  

 

The matching ‘end’ keyword can be omitted when 
modifying a single property, and the alias ‘args’ has been 

introduced for the commonly occurring 
‘tool.test_run.args’ property. 

Second, good patterns can be documented and 
communicated to other members of the team.  For 
example, the following pattern can be used to derive a 
series of tests of escalating functional complexity: 

 

Each new test is derived by copying its predecessor and 
enabling a new function.  When fed input from a random 
generator, this series can test the interactions of each new 
feature against all previous ones. 

7 Conclusions 

A verification flow management tool called DV has been 
developed as a natural extension of the methods used to 
bring a fragmented design environment under control.  
The main benefit of such a tool is the ability of 
verification engineers to automatically run the thousands 
of tests required to ensure that an ASIC design is bug-
free.  The DV tool is architected on an underlying model 
of design verification that encompasses both the design 
structure and the verification flow.  At the same time, its 
implementation is guided by the constraints of a startup 
company in a way that allows it to evolve with the 
company.  By capturing the verification process in an 
executable format, it has become a foundation tool for 
ASIC design projects. 
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// Base test. 
test t = 
  conf = c1 
  flow = default 
endtest 
 
// First derived test. 
test t1 : t += 
  tool.test_run.args = "-obj 1" 
endtest 
 
// Second derived test. 
test t2 : t += 
  tool.test_run.args = "-obj 2" 
endtest 

test t1 += 
  tool.bld_sim.args += -pli_waves 
  tool.run_sim.args += -wave_dump 
endtest 

// Derived tests. 
test t1 : t += args = "-obj 1" 
test t2 : t += args = "-obj 2" 

// Escalating difficulty series. 
test t1 : t  += args =  -func 1 
test t2 : t1 += args += -func 2 
test t3 : t2 += args += -func 3 


