
Building Design Process
in a Startup Company
David A. Gates
ATI Research Silicon Valley
EDP-2003

5/2/2003

2

Outline

• Motivation
• Startup Challenges
• Functional Verification
• Design Process Evolution
• DV Architecture
• DV Implementation and Experience
• Conclusions

5/2/2003

3

Project Tradeoffs
TIME RESOURCES (COST, PEOPLE)

FEATURES

5/2/2003

4

Why Build a Design Process?

• Design Process brings Chaos
under Control.

• Design Automation makes
Tradeoffs Easier!

– More exploration ➨ more,
better FEATURES.

– Lower TIME of iterations /
design changes.

– Lower COST of finding /
fixing human errors.

– Enables more work by fewer
PEOPLE.

5/2/2003

5

Startup Challenges

• Change is Inevitable
– Small company

inherently more agile.
– Redirect when goals

can’t be met.
– Design process must be

MODIFIABLE.
• Time is of the Essence

– Win the race or die.
– Process quality suffers.
– BUT 2nd product can’t

take as long as 1st.
– Design process must be

CAPTURED.

5/2/2003

6

Startup Challenges (Cont.)

• Few Hands make Heavy
Work ☺

– Deep Experience
balances Limited
Workforce.

– “Best Practices” differ
from one to the next.

– Design process must be
ABSTRACTED.

• Cutting Edge Design
– Must discover right

process via experiment.
– Design process must be

EXTENSIBLE.

5/2/2003

7

Functional Verification –
Example Flow

Golden
Results

Compile
Stimulus
Generator

Compile
Simulator

Generate
Stimulus

SimulatorGenerator

Stimulus Run
Simulator

Sim
Results

Check
Results

Make
Libraries

Libraries

5/2/2003

8

Design Process Evolution

• Piecemeal Automation
– Developed in Isolation
– Diverse Implementation
– One Task per Piece
– No One Knows the Flow

• Manual Flows / Checklists
– Stitch Together Pieces
– Trial-and-Error Creation
– Mystery Dependencies
– Clobber and Rebuild for

Safety
– Observable, Executed

One Step at a Time

5/2/2003

9

Design Process Evolution (Cont.)

• Hard-coded Scripts
– Automate Manual Flow

via Direct Translation
– Difficult to Spot Bugs
– Locked to User, Project,

Block, Activity
– Difficult to Select

Alternate Flows or Entry
Points

• Generalized Scripts
– Work Across Users,

Projects and Blocks

5/2/2003

10

DV Requirements

• Flexible
– Handle multiple flows and levels of detail.

• Extensible
– Add or modify flows specific to one area.

• Formatted
– Maintained by design and verification engineers.

• Automated
– Run tests or sets of tests interactively / as batch.

• Observable
– Easily follow flow of control to spot problems.

• Modifiable
– Tool can be updated as project progresses.

5/2/2003

11

DV Architecture

DV Language
Test Database

User Test
Selection

Main Control
Engine

Parser /
Translator

Execution
Engine

Batch
System

Internal
Database

Description Execution

5/2/2003

12

DV Language: Elements

• Configurations : Design Structure
– Configuration = Components + Views
– Components include Blocks, Interfaces, Monitors
– Views include Behavioral, RTL, Netlist

• Tools : Verification Actions
– Tool = Directory + Command + Arguments
– Parameterized with Block, Test, and Configuration names

• Flows : Verification Process
– Flow = Order / Dependencies
– Can use Sequential, Parallel and Selective execution

• Tests : Tie Together Structure and Action
– Test = Configuration + Flow
– Tests can pass Tools unique Parameters

5/2/2003

13

DV Language: Example
// Describe test.

test t1

conf = c1

flow = default

endtest

// Describe configuration.

conf c1

block1 = rtl

block1_mon = live

endconf

// Describe tools.

tool make_lib

dir = $TOP/lib

cmd = make

endtool

...

// Describe flow.

flow default

make_lib

par

seq

make_gen

run_gen

endseq

bld_sim

endpar

run_sim

chk_sim

endflow

5/2/2003

14

DV Execution

Use ARGs to set INTERACTIVE/BATCH mode.

Use ARGs to get list of BLOCKs.

foreach BLOCK

Use ARGs to get list of TESTs.

foreach TEST

Query Database to get CONF/FLOW.

Dispatch FLOW to Execution Engine.

end

end

5/2/2003

15

DV Implementation

• User-Interface & Execution
– 4000 lines of PERL
– rapid development and evolution

• Parser / Translator
– 1000 lines of lex / yacc / C
– better translation speed
– set of objects (conf, tool, flow, test) is fixed
– set of properties on objects is open

• Batch Execution uses Platform LSF
• Verified Nintendo GAMECUBE 3D Pipeline

5/2/2003

16

DV Experience

• Phased Introduction
– Initial Rollout Follows Architecture ②
– Batch Execution Added to Manage Machines and

Licenses
– Active Use suggested Optimizations & Extensions
– Changes made to both Description and Execution

• Process Capture
– Avoid Proliferation of Arguments and Environment

Variables
– Encapsulate Detailed Argument Settings
– Don’t Use Environment Variables to Make Choices!

• Pattern Finding
– Search Database looking for Commonality
– Optimize Language to Simplify Patterns
– Document and Communicate to Improve Process

5/2/2003

17

Conclusions

• Startups are Flexible, Fast and Fearless.
• Automated Process Essential for Startup

Success.
• Verification Process Must Handle:

– Design Structure (Data)
– Verification Flow (Methods)

• DV Evolved from Ad Hoc Verification Solutions
• DV Captures Verification Process
• DV Still Used for Verification at ATI

