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Abstract 
 
Practically all digital System on Chip (SoC) designs 
contain embedded ROM, RAM, or register file memories 
of various sizes. These types of embedded memory on 
average consume 30 - 50 percent of die area and this 
percentage is growing at an astounding 25 percent 
annually [1]. With so many designs containing memory 
devices, on-chip critical timing paths will either start or 
end at memory address, data, or control pins. In addition 
to clock circuitry and I/O ring power consumption, 
memory power consumption is the most significant factor 
for on-chip power expenditure [2]. Therefore, in order to 
generate high-quality SoC designs, one must have the 
ability to accurately model embedded memory devices 
[3]. Existing methods for embedded memory 
characterization and modeling for timing and power take 
too many shortcuts. These methods result in poor quality 
models that when used in design flows for nanometer 
technology processes cause timing closure issues and 
unpredictable power analysis results. This paper presents 
a unique methodology for accurate and complete timing 
and power model generation for embedded memory. 
Unlike current solutions that advocate simplifications 
that sacrifice accuracy and correctness of memory 
models, our solution enables processing and analysis of 
the entire memory in order to automatically generate 
accurate and complete embedded memory models. The 
benefits of using this solution with two SoC design flows 
will be discussed. 
 
1 Introduction 
 
With the increasing use of embedded memories in SoC 
designs (see figure 1), it has become more difficult for 
design construction, optimization, and analysis tools to 
efficiently perform their function. Standard cells are the 
building blocks of modern IC designs. However, 
embedded memories cannot be characterized and treated 
like standard cells [1, 3]. This means that design 
construction and optimization tools like physical 
synthesis must rely on inaccurate memory models and are 
therefore unable to accurately account for the correct 
timing and power of the instantiated memory. Instead, the 
tool users rely on approximated constraints or poorly 
correlated models and must rectify approximations at 
final analysis. 
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Figure 1: Typical SoC Design Layout. 

 
To mitigate these inaccuracies, SoC teams are forced to 
gaurdband and over-design. However, over-designing to 
accommodate timing inaccuracies translates into 
increased die area and increased manufacturing costs. 
Over designing to accommodate power inaccuracies 
directly influences chip pin-out and packaging costs. 
Lack of information and inaccurate estimates can delay 
power related decisions, thus negatively impacting de-
sign schedules. This is especially troublesome in mixed-
signal designs where pin-out can determine the success or 
failure of analog components. The implications of all 
these trends are clear: memory characterization and 
modeling is of significant concern to SoC design teams 
and accurate memory models are required in all phases of 
design (see figure 2). 
 

 
Figure 2: Use of Memory Models in a Design Flow. 



2 Traditional Solutions for Generating Memory 
Models 

 
Traditional solutions for memory model generation are 
mainly repackaged memory compiler based techniques 
and lack significant levels of automation. Typically they 
consist of either a netlist prune/cut based approach to 
approximate electrical behavior of the memory device or, 
the use of memory compilers to generate required 
models. Both of these approaches will be considered in 
detail. 
 
3 Pruned Netlist or Cut Based Memory Model 

Generation 
 
Some design teams attempt to simulate a memory with 
SPICE by means of a pruned netlist or cutting approach. 
This manual methodology can be a very time consuming 
and error prone task. Due to capacity issues, it is 
impossible to simulate an entire memory using SPICE. 
Therefore, the memory netlist must be cut and pruned. 
Netlist cutting creates a piecemeal analysis of the 
memory components. The address decoding logic, 
wordline, bitcell, bitlines, column multiplexing, and 
output logic are analyzed individually using SPICE and 
the final model is composed of calculations based on the 
individual results. Netlist pruning is the process of 
isolating one or more addresses in the core while 
discarding the rest. The result is a smaller netlist on 
which SPICE can be used effectively. This process is 
error prone and time consuming, especially for designs in 
the post-layout phase. Standby and active power usage 
are estimated based on the size of the memory. 
 
As shown in the figure 3, the process for generating a 
memory model with a netlist prune/cut based approach is 
fairly complex. The phases for critical path identification 
(for pruning purposes), reduction of the extracted netlist, 
and specification of the measurements and stimulus to 
drive SPICE are not trivial. These tasks require transistor-
level expertise as well as significant preparation time. 
Once again, there can be significant loss of accuracy due 
to the cutting process and reduction of the netlist. Cutting 
leaves lots of dangling nets which if tied off with lumped 
capacitors will not reflect the actual behavior of active 
transistor devices [1]. Additionally, it is vital that this 
approach find the correct critical path to prune because 
this is the only path in the entire memory that will be 
simulated with SPICE. Without full transistor-level 
analysis of the netlist, including all of the detailed 
parasitics, it is difficult to manually determine the actual 
critical path. 
 
Typically, the final accuracy of a netlist prune/cut based 
method is better than relying on a compiler generated 
memory model; however, significant inaccuracies still 

exist. When comparing to SPICE, about 25% - 40%. 
Error is usually observed. This error is significant for 
today’s nanometer SoC designs. Finally, a netlist 
prune/cut method does not address the need for accurate 
power characterization. Instead a maximum power usage 
value can only be estimated. This estimation can have 
dire consequences for a today’s battery operated devices. 
 

 
Figure 3: Typical Flow for Netlist Prune/Cut Based 

Characterization and Model Generation. 
 
4 Memory Compiler Generated Memory Models 
 
Memory compilers generate models of a specific memory 
instance by interpolating the performance from the data 
of a few known instances. Therefore, the actual memory 
instance instantiated in the design may not have been 
characterized. Additionally, the chosen instances are 
characterized by pruning and cutting statistically 
determined critical paths. Pruning and cutting as 
explained in the previous section adds additional error to 
the characterization process. Interpolation and 
extrapolation is accomplished with various mathematical 
functions, such as linear interpolation, statistical curve 
fitting, time series analysis, and splines. Given that 
interpolation and extrapolation isn’t an exact match, there 
can be significant error when comparing the interpolated 
data to the actual results [7]. 
 
In order to verify accuracy, the following experiment was 
conducted with an 8X2bit single port RAM. This analysis 
consisted of running SPICE for various memory 
constraints such as access time and address setup. The 
data from these measurements were then compared to  
data from typical memory compiler generation processes.  
 
We created a compiler using standard memory compiler  



techniques which involve selective characterization of 
unique memory types, i.e. user selected address and data 
input/output bus widths, aspect ratio, etc. This method is 
favored by commercial compiler developers utilizing a 
netlist cut or prune based approach [8]. The characterized 
data was then interpolated to generate data for the 
memory model in question (the 8X2bit single port RAM). 
Due to runtime limits of running SPICE on larger 
memories, a small memory was chosen for this example. 
The graphs for SPICE versus compiler data are shown in 
figures 4 - 7. Due to runtime overhead for power 
consumption data (>3 days per measurement) we had to 
use aggressive netlist cutting techniques. This approach is 
typical in commercial compiler designs. Data for power 
accuracy is shown in figure 7. 
 
As shown in the graphs in figures 4 - 7, cutting, pruning, 
estimating, gaurdbanding, interpolating, and 
extrapolating can inject a significant amount of error in to 
the final analysis of the memory. In this example a maxi-
mum error of about 110% was observed (see figures 8 
and 9). Given that the memory device is often in the 
critical path of most SoC designs, inaccuracies as shown 
below will significantly impact the final performance 
metrics of the design. 
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Figure 4: Access Time. 
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Figure 5: Address Setup. 
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Figure 6: Output Slew. 
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Figure 7: Average Power. 
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Figure 8: Access Time Error (-40% to -100%) for 

Compiler vs. SPICE. 
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Figure 9: Address Setup Error (-2% to -110%) for 
Compiler vs. SPICE. 

 
Additionally, memory models generated from compilers 
for timing analysis are usually created for single process, 
voltage, and temperature (PVT). If the model is not 
designed to represent the actual operating point 



(environment), then there is a real danger the memory 
may not operate within the timing constraints [1]. 
Additionally, compiler generated memories rely on 
foundry data available during shipment of the compiler. 
Therefore, the memory models generated may not be 
built from the most recent foundry SPICE models. These 
deficiencies in modeling accuracy can result in failed 
power-on of the chip. 
 
Standard compiler based memory designs only 
marginally support ultra-low power design efforts. Due to 
estimation in standard power characterization methods 
for memories, power usage is often approximated to a 
fixed value. However, EDA tools utilizing the ALF [4] 
and Liberty® (Synopsys .lib) [5] library formats require 
variable average memory power usage. In the absence of 
adequate characterization solutions, memory compilers 
will insert gaurdbanded estimations which are closer to 
maximum power usage than average power usage. As a 
result, power consumption budgets have artificial 
constraints and additional guardbanding. In ultra low 
power applications, this type of guardbanding may 
overburden other parts of the design where the excesses 
must be compensated for in order to meet strict power 
consumption limits. 
 
5 A Contemporary Memory Characterization and 

Modeling Solution 
 
The latest solutions for advanced memory modeling 
should strive to improve the accuracy of the models, 
while also providing an automated, high-throughput flow 
for the generation of the models. Ideally characterization 
and model generation should be a push button process. 
One of the ways to accomplish high throughput runtime 
is to leverage hierarchical simulators. Array reduction 
capabilities in these simulators are suited for memory 
devices. Additionally, the variance to traditional SPICE is 
often only 2% - 4% , resulting in highly accurate timing 
and power models [6]. 
 
The flexibility provided by this method enables de-
signers to generate memory models that fit the unique 
needs of a particular design including the actual operating 
point(s) (PVT). Because the entire post-layout netlist is 
actually simulated, designers no longer need to 
compensate for estimation in the measurement process. 
The models generated are instance specific for the SoC 
design that they will be embedded in. Because the 
memory model is applicable to a particular design, 
guardband is user-controllable. Most importantly memory 
characterization no longer requires netlist cutting, netlist 
pruning, or synthesis of the measurements of the 
individual memory components. 
 
In order to verify memory characterization and modeling  

with, we built the following automated flow (see figure 
10). 
 

 
Figure 10: Automated Flow for Memory Characterization 

and Model Generation. 
 
The inputs to this system consist of a complete memory 
netlist with interconnect parasitics and a memory 
configuration file. The memory configuration 
hierarchically describes the function of the memory, 
including pins, functional relationship between pins, and 
in some cases the timing and power arcs within the 
memory. The memory configuration input is simple to 
generate and is typically 15-30 lines of Tcl code. Based 
on the configuration input, the system automatically 
determines the required measurements. The alternate 
input is the industry standard Liberty™ (.lib) source file. 
Once the measurements have been determined, 
simulation is performed with a high-speed simulator. 
Data is stored in a measurement database and model 
writers generate Liberty™ (.lib) models. We also built a 
model verification capability to verify syntax and 
semantics of the generated models. 
 
Results from this methodology showed significant 
promise in terms of the accuracy of the models generated 
as well as the throughput of the system. In terms of 
accuracy, the graphs in figures 11 and 12 show the results 
of comparing measurements from this system compared 
to exact SPICE measurements. 
 
As depicted in figures 11 and 12, the new models 
generated with the automated flow utilizing high-speed 
simulators generates models that are very accurate. 
Typical variance from SPICE is 2% - 3%, with a maxi-
mum variance of about 5%. Throughput is extremely 
efficient as well. Utilizing a parallel processing technique  
for arc by arc parallel distribution as well as SPICE deck 
optimization, the single port RAM (size: 8X2) was 



processed in approximately 15 minutes. As a result of the 
hierarchical processing capability of simulators, larger 
memories are characterized very quickly. For example, a 
32Kb memory requires 2.5 hours and a 256Kb memory 
requires 9 hours. 
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Figure 11: Access Time. 
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Figure 12: Address Setup. 

 
6 Using Accurate Models in a Contemporary 

Design Flows 
 
Correct and accurate memory timing models are needed 
for timing driven place and route, static timing analysis, 
and final timing sign-off. Accurate memory power 
models are needed for low cost package determination.  
 
It is important to eliminate complexity from the memory 
characterization and modeling process to turn 
characterization and memory model generation into a 
pushbutton process. Requirements for automation 
include; automatic stimulus generation, arc-based job 
distribution, automatic deck creation, archiving, and 
prepackaged timing and power methodologies that match 
the target model. High throughput for characterization is 
obtained with the use of hierarchical simulators, 
parallelized distribution of simulation jobs that are 
granularized at the per-arc level, and intelligent spice 
deck creation to utilize hierarchical processing. 
 
Our characterization and modeling solution addresses  

these key issues of timing and power closure with 
embedded memories in advanced SoC designs. With a 
pushbutton process for generating precise memory 
models for timing and power, designers can generate 
memory models for their unique application. 
 
The solution solves power accuracy issues by providing 
easily configured power acquisition capability. Complex 
analysis can be performed to determine average power 
consumption in design-specific configurations. Designers 
can account for typical utilization patterns such as 
sequential access versus random access and generate 
power numbers appropriately. Analysis of various modes, 
such as low power or quiescent modes is also possible. 
This gives designers the information needed to make 
important decisions earlier in the design cycle such as 
decisions related to packaging, chip pin-out, floor 
planning, and power routing. 
 

 
Figure 13: Improved Design Flow with Robust and 

Precise Embedded Memory Models. 
 
The recommended flow utilizing memory 
characterization and modeling is shown in figure 13. Two 
flows that are applicable to SOC designers are shown. 
The first is a re-characterization flow in which designers 
take existing memory models (generated by a compiler) 
and perform a re-characterization step to improve 
accuracy of the models. Typically the model format will 
be in the public domain Liberty format (also known as 
.lib). With this methodology, users can characterize for 
unique PVT conditions required for their design. The 
second flow is for characterization of custom memories. 
These could be hand crafted memories or compiler 
generated memories that have been modified. In this case, 
there are no existing models. The suggested flow would 
involve creating a memory configuration file that is then 
read by the automated characterization system. This flow 
is also useful for re-characterization, when an existing 
memory model generated by a compiler may not be of 
good quality. In this case, model generation from scratch 
would be the preferred solution. The flows described 
liberate memory design teams to concentrate on circuit 
design and memory architecture development rather than 



the tedious and time-consuming process of verifying and 
supporting existing designs. 
 
7 Conclusion 
 
Time-to-market, custom package tooling, die real-estate 
requirements, and the ensuing design closure issues 
create a complex decision making process that demands 
accuracy and flexibility. Embedded memories are often at 
the core of this process due to their increased dominance 
in SoC designs and can negatively impact a design flow. 
Traditional methods for memory model generation and 
characterization are often inaccurate and use inefficient 
processes. A new solution that leverages high capacity 
simulators offers the capability to generate accurate 
models with high throughput. This system was verified 
with test cases to demonstrate the capability to generate 
accurate models for various memory types. The system is 
flexible for acquiring data for timing and power. Data 
described in this paper showed a minimal 2% - 3% 
variance from SPICE. The use of this system in SoC 
design flows will improve quality of design. The 
commercial application based on this research, 
SiliconSmart MR from Silicon Metrics, showed that 
accurate timing and power memory models of any size 
can be generated with a rapid, precise, and pushbutton 
process. Thus enables designers to successfully 
implement high-speed and high-density embedded 
memory-based SoC designs that meet today’s demanding 
cost and schedule requirements. 
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