
Improving SoC Design Flows with Robust and Precise
Embedded Memory Models

Jay Abraham

Silicon Metrics Corp., Austin TX, USA

Abstract

Practically all digital System on Chip (SoC) designs
contain embedded ROM, RAM, or register file memories
of various sizes. These types of embedded memory on
average consume 30 - 50 percent of die area and this
percentage is growing at an astounding 25 percent
annually [1]. With so many designs containing memory
devices, on-chip critical timing paths will either start or
end at memory address, data, or control pins. In addition
to clock circuitry and I/O ring power consumption,
memory power consumption is the most significant factor
for on-chip power expenditure [2]. Therefore, in order to
generate high-quality SoC designs, one must have the
ability to accurately model embedded memory devices
[3]. Existing methods for embedded memory
characterization and modeling for timing and power take
too many shortcuts. These methods result in poor quality
models that when used in design flows for nanometer
technology processes cause timing closure issues and
unpredictable power analysis results. This paper presents
a unique methodology for accurate and complete timing
and power model generation for embedded memory.
Unlike current solutions that advocate simplifications
that sacrifice accuracy and correctness of memory
models, our solution enables processing and analysis of
the entire memory in order to automatically generate
accurate and complete embedded memory models. The
benefits of using this solution with two SoC design flows
will be discussed.

1 Introduction

With the increasing use of embedded memories in SoC
designs (see figure 1), it has become more difficult for
design construction, optimization, and analysis tools to
efficiently perform their function. Standard cells are the
building blocks of modern IC designs. However,
embedded memories cannot be characterized and treated
like standard cells [1, 3]. This means that design
construction and optimization tools like physical
synthesis must rely on inaccurate memory models and are
therefore unable to accurately account for the correct
timing and power of the instantiated memory. Instead, the
tool users rely on approximated constraints or poorly
correlated models and must rectify approximations at
final analysis.

I/O pads

Embedded memory

Synthesized logic
Data path
Hard cores (uP….DSP)

Figure 1: Typical SoC Design Layout.

To mitigate these inaccuracies, SoC teams are forced to
gaurdband and over-design. However, over-designing to
accommodate timing inaccuracies translates into
increased die area and increased manufacturing costs.
Over designing to accommodate power inaccuracies
directly influences chip pin-out and packaging costs.
Lack of information and inaccurate estimates can delay
power related decisions, thus negatively impacting de-
sign schedules. This is especially troublesome in mixed-
signal designs where pin-out can determine the success or
failure of analog components. The implications of all
these trends are clear: memory characterization and
modeling is of significant concern to SoC design teams
and accurate memory models are required in all phases of
design (see figure 2).

Figure 2: Use of Memory Models in a Design Flow.

2 Traditional Solutions for Generating Memory
Models

Traditional solutions for memory model generation are
mainly repackaged memory compiler based techniques
and lack significant levels of automation. Typically they
consist of either a netlist prune/cut based approach to
approximate electrical behavior of the memory device or,
the use of memory compilers to generate required
models. Both of these approaches will be considered in
detail.

3 Pruned Netlist or Cut Based Memory Model

Generation

Some design teams attempt to simulate a memory with
SPICE by means of a pruned netlist or cutting approach.
This manual methodology can be a very time consuming
and error prone task. Due to capacity issues, it is
impossible to simulate an entire memory using SPICE.
Therefore, the memory netlist must be cut and pruned.
Netlist cutting creates a piecemeal analysis of the
memory components. The address decoding logic,
wordline, bitcell, bitlines, column multiplexing, and
output logic are analyzed individually using SPICE and
the final model is composed of calculations based on the
individual results. Netlist pruning is the process of
isolating one or more addresses in the core while
discarding the rest. The result is a smaller netlist on
which SPICE can be used effectively. This process is
error prone and time consuming, especially for designs in
the post-layout phase. Standby and active power usage
are estimated based on the size of the memory.

As shown in the figure 3, the process for generating a
memory model with a netlist prune/cut based approach is
fairly complex. The phases for critical path identification
(for pruning purposes), reduction of the extracted netlist,
and specification of the measurements and stimulus to
drive SPICE are not trivial. These tasks require transistor-
level expertise as well as significant preparation time.
Once again, there can be significant loss of accuracy due
to the cutting process and reduction of the netlist. Cutting
leaves lots of dangling nets which if tied off with lumped
capacitors will not reflect the actual behavior of active
transistor devices [1]. Additionally, it is vital that this
approach find the correct critical path to prune because
this is the only path in the entire memory that will be
simulated with SPICE. Without full transistor-level
analysis of the netlist, including all of the detailed
parasitics, it is difficult to manually determine the actual
critical path.

Typically, the final accuracy of a netlist prune/cut based
method is better than relying on a compiler generated
memory model; however, significant inaccuracies still

exist. When comparing to SPICE, about 25% - 40%.
Error is usually observed. This error is significant for
today’s nanometer SoC designs. Finally, a netlist
prune/cut method does not address the need for accurate
power characterization. Instead a maximum power usage
value can only be estimated. This estimation can have
dire consequences for a today’s battery operated devices.

Figure 3: Typical Flow for Netlist Prune/Cut Based

Characterization and Model Generation.

4 Memory Compiler Generated Memory Models

Memory compilers generate models of a specific memory
instance by interpolating the performance from the data
of a few known instances. Therefore, the actual memory
instance instantiated in the design may not have been
characterized. Additionally, the chosen instances are
characterized by pruning and cutting statistically
determined critical paths. Pruning and cutting as
explained in the previous section adds additional error to
the characterization process. Interpolation and
extrapolation is accomplished with various mathematical
functions, such as linear interpolation, statistical curve
fitting, time series analysis, and splines. Given that
interpolation and extrapolation isn’t an exact match, there
can be significant error when comparing the interpolated
data to the actual results [7].

In order to verify accuracy, the following experiment was
conducted with an 8X2bit single port RAM. This analysis
consisted of running SPICE for various memory
constraints such as access time and address setup. The
data from these measurements were then compared to
data from typical memory compiler generation processes.

We created a compiler using standard memory compiler

techniques which involve selective characterization of
unique memory types, i.e. user selected address and data
input/output bus widths, aspect ratio, etc. This method is
favored by commercial compiler developers utilizing a
netlist cut or prune based approach [8]. The characterized
data was then interpolated to generate data for the
memory model in question (the 8X2bit single port RAM).
Due to runtime limits of running SPICE on larger
memories, a small memory was chosen for this example.
The graphs for SPICE versus compiler data are shown in
figures 4 - 7. Due to runtime overhead for power
consumption data (>3 days per measurement) we had to
use aggressive netlist cutting techniques. This approach is
typical in commercial compiler designs. Data for power
accuracy is shown in figure 7.

As shown in the graphs in figures 4 - 7, cutting, pruning,
estimating, gaurdbanding, interpolating, and
extrapolating can inject a significant amount of error in to
the final analysis of the memory. In this example a maxi-
mum error of about 110% was observed (see figures 8
and 9). Given that the memory device is often in the
critical path of most SoC designs, inaccuracies as shown
below will significantly impact the final performance
metrics of the design.

slew (ns) load (pf)

de
la

y
 (

ns
)

Compiler Generated SPICE

slew (ns) load (pf)

de
la

y
 (

ns
)

Compiler Generated SPICE

Figure 4: Access Time.

related pin slew (ns)

co
ns

. p
in

sle
w

 (n
s)

Compiler Generated

SPICE

se
tu

p
(n

s)

Figure 5: Address Setup.

slew in (ns)

sl
ew

 o
ut

(n

s)

Compiler Generated

SPICE

Figure 6: Output Slew.

slew in (ns)

po
w

er

(n

W
)

Compiler Generated

SPICE

Figure 7: Average Power.

er
ro

r
(%

)

slew (ns)

lo
ad

 (
pf

)

Figure 8: Access Time Error (-40% to -100%) for

Compiler vs. SPICE.

er
ro

r
(%

)

co
ns

. p
in

sle
w

 (
ns

)

related pin slew (ns)

Figure 9: Address Setup Error (-2% to -110%) for
Compiler vs. SPICE.

Additionally, memory models generated from compilers
for timing analysis are usually created for single process,
voltage, and temperature (PVT). If the model is not
designed to represent the actual operating point

(environment), then there is a real danger the memory
may not operate within the timing constraints [1].
Additionally, compiler generated memories rely on
foundry data available during shipment of the compiler.
Therefore, the memory models generated may not be
built from the most recent foundry SPICE models. These
deficiencies in modeling accuracy can result in failed
power-on of the chip.

Standard compiler based memory designs only
marginally support ultra-low power design efforts. Due to
estimation in standard power characterization methods
for memories, power usage is often approximated to a
fixed value. However, EDA tools utilizing the ALF [4]
and Liberty® (Synopsys .lib) [5] library formats require
variable average memory power usage. In the absence of
adequate characterization solutions, memory compilers
will insert gaurdbanded estimations which are closer to
maximum power usage than average power usage. As a
result, power consumption budgets have artificial
constraints and additional guardbanding. In ultra low
power applications, this type of guardbanding may
overburden other parts of the design where the excesses
must be compensated for in order to meet strict power
consumption limits.

5 A Contemporary Memory Characterization and

Modeling Solution

The latest solutions for advanced memory modeling
should strive to improve the accuracy of the models,
while also providing an automated, high-throughput flow
for the generation of the models. Ideally characterization
and model generation should be a push button process.
One of the ways to accomplish high throughput runtime
is to leverage hierarchical simulators. Array reduction
capabilities in these simulators are suited for memory
devices. Additionally, the variance to traditional SPICE is
often only 2% - 4% , resulting in highly accurate timing
and power models [6].

The flexibility provided by this method enables de-
signers to generate memory models that fit the unique
needs of a particular design including the actual operating
point(s) (PVT). Because the entire post-layout netlist is
actually simulated, designers no longer need to
compensate for estimation in the measurement process.
The models generated are instance specific for the SoC
design that they will be embedded in. Because the
memory model is applicable to a particular design,
guardband is user-controllable. Most importantly memory
characterization no longer requires netlist cutting, netlist
pruning, or synthesis of the measurements of the
individual memory components.

In order to verify memory characterization and modeling

with, we built the following automated flow (see figure
10).

Figure 10: Automated Flow for Memory Characterization

and Model Generation.

The inputs to this system consist of a complete memory
netlist with interconnect parasitics and a memory
configuration file. The memory configuration
hierarchically describes the function of the memory,
including pins, functional relationship between pins, and
in some cases the timing and power arcs within the
memory. The memory configuration input is simple to
generate and is typically 15-30 lines of Tcl code. Based
on the configuration input, the system automatically
determines the required measurements. The alternate
input is the industry standard Liberty™ (.lib) source file.
Once the measurements have been determined,
simulation is performed with a high-speed simulator.
Data is stored in a measurement database and model
writers generate Liberty™ (.lib) models. We also built a
model verification capability to verify syntax and
semantics of the generated models.

Results from this methodology showed significant
promise in terms of the accuracy of the models generated
as well as the throughput of the system. In terms of
accuracy, the graphs in figures 11 and 12 show the results
of comparing measurements from this system compared
to exact SPICE measurements.

As depicted in figures 11 and 12, the new models
generated with the automated flow utilizing high-speed
simulators generates models that are very accurate.
Typical variance from SPICE is 2% - 3%, with a maxi-
mum variance of about 5%. Throughput is extremely
efficient as well. Utilizing a parallel processing technique
for arc by arc parallel distribution as well as SPICE deck
optimization, the single port RAM (size: 8X2) was

processed in approximately 15 minutes. As a result of the
hierarchical processing capability of simulators, larger
memories are characterized very quickly. For example, a
32Kb memory requires 2.5 hours and a 256Kb memory
requires 9 hours.

slew (ns) load (pf)

de
la

y
 (

ns
)

SPICE New Models

Figure 11: Access Time.

related pin slew (ns)

co
ns

. p
in

sle
w

 (n
s)

New Models
SPICE

se
tu

p
(n

s)

Figure 12: Address Setup.

6 Using Accurate Models in a Contemporary

Design Flows

Correct and accurate memory timing models are needed
for timing driven place and route, static timing analysis,
and final timing sign-off. Accurate memory power
models are needed for low cost package determination.

It is important to eliminate complexity from the memory
characterization and modeling process to turn
characterization and memory model generation into a
pushbutton process. Requirements for automation
include; automatic stimulus generation, arc-based job
distribution, automatic deck creation, archiving, and
prepackaged timing and power methodologies that match
the target model. High throughput for characterization is
obtained with the use of hierarchical simulators,
parallelized distribution of simulation jobs that are
granularized at the per-arc level, and intelligent spice
deck creation to utilize hierarchical processing.

Our characterization and modeling solution addresses

these key issues of timing and power closure with
embedded memories in advanced SoC designs. With a
pushbutton process for generating precise memory
models for timing and power, designers can generate
memory models for their unique application.

The solution solves power accuracy issues by providing
easily configured power acquisition capability. Complex
analysis can be performed to determine average power
consumption in design-specific configurations. Designers
can account for typical utilization patterns such as
sequential access versus random access and generate
power numbers appropriately. Analysis of various modes,
such as low power or quiescent modes is also possible.
This gives designers the information needed to make
important decisions earlier in the design cycle such as
decisions related to packaging, chip pin-out, floor
planning, and power routing.

Figure 13: Improved Design Flow with Robust and

Precise Embedded Memory Models.

The recommended flow utilizing memory
characterization and modeling is shown in figure 13. Two
flows that are applicable to SOC designers are shown.
The first is a re-characterization flow in which designers
take existing memory models (generated by a compiler)
and perform a re-characterization step to improve
accuracy of the models. Typically the model format will
be in the public domain Liberty format (also known as
.lib). With this methodology, users can characterize for
unique PVT conditions required for their design. The
second flow is for characterization of custom memories.
These could be hand crafted memories or compiler
generated memories that have been modified. In this case,
there are no existing models. The suggested flow would
involve creating a memory configuration file that is then
read by the automated characterization system. This flow
is also useful for re-characterization, when an existing
memory model generated by a compiler may not be of
good quality. In this case, model generation from scratch
would be the preferred solution. The flows described
liberate memory design teams to concentrate on circuit
design and memory architecture development rather than

the tedious and time-consuming process of verifying and
supporting existing designs.

7 Conclusion

Time-to-market, custom package tooling, die real-estate
requirements, and the ensuing design closure issues
create a complex decision making process that demands
accuracy and flexibility. Embedded memories are often at
the core of this process due to their increased dominance
in SoC designs and can negatively impact a design flow.
Traditional methods for memory model generation and
characterization are often inaccurate and use inefficient
processes. A new solution that leverages high capacity
simulators offers the capability to generate accurate
models with high throughput. This system was verified
with test cases to demonstrate the capability to generate
accurate models for various memory types. The system is
flexible for acquiring data for timing and power. Data
described in this paper showed a minimal 2% - 3%
variance from SPICE. The use of this system in SoC
design flows will improve quality of design. The
commercial application based on this research,
SiliconSmart MR from Silicon Metrics, showed that
accurate timing and power memory models of any size
can be generated with a rapid, precise, and pushbutton
process. Thus enables designers to successfully
implement high-speed and high-density embedded
memory-based SoC designs that meet today’s demanding
cost and schedule requirements.

References

[1] Eric Hall and George Costakis, “Developing a

Design Methodology for Embedded Memories”,
Integrated System Design, January 2000.

[2] Alberto Macii, Luca Benini, and Massimo Poncino,
“Memory Design Techniques for Low Energy
Embedded Systems”, Kluwer Academic Publishers,
2002.

[3] Tegze Haraszti, “CMOS Memory Circuits”, Kluwer
Academic Publishers, 2001.

[4] “Advanced Library Format for ASIC Technology,
Cells, and Blocks version 2.0”, Accellera, 2000.

[5] “Library Compiler Reference Manual volumes 1-3”,
Synopsys, 2001.

[6] Sam Wang and An-Chang Deng, “Delivering a Full-
chip Hierarchical Circuit Simulation and Analysis
Solution for Nanometer Designs”, Nassda, May
2002.

[7] Ravi Agarwal and Patricia Wong, “Error Inequalities
in Polynomial Interpolation and Their Applications,
Kluwer Academic Publishers, July 1993.

[8] Charles Longway and You-Pang Wei, “Automatic
Memory IP Characterization”, EEdesign, December
6 2000.

