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Abstract 
 
With the proliferation of Field-Programmable System-on-
Chip (FPSoC) devices such as Altera Excalibur and 
Xilinx Virtex II Pro, more system integrators are now 
facing the challenge of merging hardware and software 
design. This paper describes software-compiled system 
design, a methodology supporting the design of 
electronics containing both programmable logic and 
software-driven microprocessors. To facilitate hardware 
and software design convergence, this methodology 
includes C-based design descriptions, hardware/software 
co-design partitioning and analysis, multi-level and 
multi-language co-verification, and direct compilation to 
programmable logic. The paper presents a practical 
implementation of this methodology using the Celoxica 
DK Design Suite of tools as well as a design example 
employing a JPEG2000 algorithm. 
 
1 Introduction 
 
As FPGAs have developed from logic prototyping 
devices into fundamental system elements, there has been 
enthusiasm for the concept of using high-performance 
processors, closely coupled to – or immersed inside – the 
FPGA fabric to create a Field Programmable System-on-
Chip (FPSoC). 
  
In the FPSoC architecture, the microprocessor typically 
runs system applications while the FPGA manages 
computationally intensive tasks. The availability of both 
processor and the equivalent of millions of gates of 
programmable logic give designers new opportunities to 
quickly develop, prototype and implement complete 
systems, delivering both better performance and 
flexibility. 
 
As FPSoC entails hardware and software design, these 
complete system devices also present designers with all 
the challenges of system design. In this paper we will 
explore these design challenges, and present a description 
of a methodology created to address those challenges, 
Software-Compiled System Design. The paper also 
presents a system design example implementing a 
complex design example on an FPSoC device as 
validation of this methodology.  
  

The paper necessarily also provides brief descriptions of 
the tool set used to implement the methodology for this 
design example.  Though Celoxica developed this 
methodology and provides a set of tools to support it, the 
methodology itself is independent of any particular 
design language or tool vendor. The vision is to represent 
a methodology entailing successful system design 
practices that may be applied to all system designs that 
include custom logic and software-driven 
microprocessors. As the Software-Compiled System 
Design methodology provides a direct path from higher-
level languages, through co-design and co-verification to 
direct implementation of FPGA logic, the methodology is 
especially beneficial for FPSoC design.  
 
2 Challenges of System Level Design 
 
Not too long ago the challenges of system design were 
mainly discussed in the context of System-on-Chip (SoC) 
devices that combined millions of gates with embedded 
processors. However, in the unrelenting march of 
Moore’s law, programmable logic designers now have 
the opportunity to put millions of gates into FPGA 
devices. Many of them are doing just that as half of 
FPGA designs now include over 500K gates1. As design 
complexity increases, so does the adoption of higher-
level languages – some simulation usage of C and C++ is 
now included in 74% of designs1.  The propagation of 
FPSoC devices combining mega-logic with embedded 
processors will further spur the demand for system design 
tools that improve design productivity while maintaining 
quality of results (QoR).  
 
Traditionally FPGA hardware is designed using 
techniques, methodologies, and languages borrowed from 
ASIC design2.  Software development is undertaken 
using techniques, methodologies, and languages designed 
to describe software systems. There has been a divide 
between the disciplines and it is obvious that hardware 
and software methodologies do not talk together3. 
 
As an example, current methods for embedded systems 
design require that hardware and software be specified 
and designed separately.  System specifications typically 
use C or C++ and then create a paper document that 
delegates the functional design to the respective hardware 
and software teams. The design implementation is then 



coded in different languages. The software team 
maintains the use of C or C++, while the hardware team 
translates the paper specification into VHDL or Verilog. 
This process precludes co-design and the partitioning is 
often decided a priori based only on historical divisions. 
And once the partition decisions are made they can not be 
revisited, as changes to the partition can necessitate 
expensive redesign of both the hardware and software,.  
System verification in this process is similarly hindered 
by the gap between the hardware design flow and the 
original specification.  The lack of continuity and direct 
implementation between design phases necessitates 
exhaustive functional re-verification at every step. 
 
The deficiencies of the current state of system design are 
clear: 
 

• Lack of a unified hardware-software 
representation leads to difficulties in verification 
of the entire system, and to incompatibilities 
across the hardware-software boundary; 

• Defining system partitions in advance leads to 
sub-optimal designs or requires costly redesign; 

• Hardware implementations of the system 
specification require time-consuming and 
possibly error-prone rewriting into HDL; 

• Lack of a well-defined and flexible co-design 
methodology makes specification revision 
difficult and affects time to market. 

 
3 Software-Compiled System Design 
 
To address the challenges of system-level design 
generally, and FPSoC specifically, we present Software-
Compiled System Design (SCSD), a methodology 
converging hardware and software techniques in the 
design of electronic systems. This methodology provides 
a cohesive path from system specification and functional 
algorithm identification, through partitioning and 
verification, to system implementation. The resulting 
output is a functionally verified design implemented in an 
FPSoC device. 
 
Software-Compiled System Design is defined by the 
existence of four elements in the design process. First, the 
algorithm design begins with functional modeling using 
higher-level language (HLL) design descriptions. 
Specifically the system descriptions utilize C-based 
languages such as C, C++, SystemC, SpecC or Handel-C 
to name a few of the options available to designers. Next 
using the SCSD methodology, the designer flexibly 
partitions the design between hardware and software, 
finding the optimal split before beginning 
implementation. To meet the third requirement in the 
SCSD methodology, the system is verified at the highest 
level to create a functionally correct design before 

implementation. Finally, the SCSD methodology lives up 
to the ‘software-compiled’ portion of its name by 
providing direct paths to implementation through 
compilation from C-based descriptions into both software 
and hardware. 
 
The high-level representation of the Software-Compiled 
System Design flow is shown in Figure 1 as it is 
implemented using the Celoxica DK Design Suite. 
 

 
 

Figure 1: The Software-Compiled System Design flow 
 
3.1 C- based Descriptions 
 
The success of the SCSD methodology is predicated on 
the use of higher-level language descriptions for system 
functionality. The exact language used for modeling at 
this level is less important than the capability to provide 
compatibility with system architectural analysis and to 
support easier, verifiable partitioning.  
 
The SCSD methodology supports C-based descriptions 
that are able to represent the functionality of a design 
block, independent of the eventual implementation in 
either hardware or software. While VHDL and Verilog 
are mature and capable hardware description languages, 
they are not optimal for compiling software elements of 
the design to run on processors. C-based description 
languages enable a common development path between 
hardware and software elements of the design. This trait 
of the SCSD methodology allows designers to easily 
target and retarget functionality between hardware and 
software implementations.  
 



Often C-based languages are also the functional modeling 
language of choice for system architects due to their high 
level of abstraction and interdisciplinary acceptance. 
Algorithmic models developed in C, or generated from a 
Matlab/Simulink environment may be used to drive the 
design. By using these descriptions as the source for 
functional implementation, the SCSD methodology 
avoids time-consuming and potentially error prone 
translations from paper specifications. 
 
There are many C-based languages that could fulfill the 
requirements for software-compiled system design.  So 
for modeling both hardware and software or maintaining 
continuity from the algorithm development, the SCSD 
methodology supports many C-based languages for 
system functional development.  In the Celoxica 
implementation of the SCSD methodology users have 
found benefit modeling systems in C, C++, SystemC, 
SpecC and Handel-C, often employing different 
languages for different blocks in a mixed-language 
environment to take advantage of specific modeling 
strengths in the languages, or to avoid re-writing existing 
IP.  However, as the system design gets closer to 
implementation, the tools often dictate the specific 
language for compilation. Embedded software is 
compiled into the processor from C or C++. Similarly, 
the Celoxica tool flow employs Handel-C as a simplified 
route for direct compilation of FPSoC hardware using 
ANSI-C syntax with simple hardware implementation 
directives.   
 
3.2 Co-design and Partitioning 
 
Fundamental elements of any co-design methodology, 
profiling and partitioning are used to help identify 
optimal design methods early in the design cycle. In the 
software world, the profiler is used as an analysis tool to 
examine run time behavior of a program. Applying a 
similar approach, the profiler in the SCSD methodology 
can help find the optimal system partition by analyzing 
hardware and software performance and the interfaces 
between the two. 
 
Software-Compiled System Design provides a practical 
means for the co-design of hardware and software. 
System functionality is developed using technology-
neutral C-based descriptions to create a working model of 
the design. The design is then divided into blocks 
representing functions that will be implemented in either 
hardware or software. Using the system specification as a 
driver, the performance of these blocks and their 
interaction can be analyzed through profiling tools. 
 
Software block analysis checks for efficient utilization of 
the processor and performance bottlenecks where 
parallelization may be added by moving the function into 

hardware. Hardware blocks are analyzed for execution 
throughput and the hardware efficiency (gates or FPGA 
elements). Hardware blocks that are too large or execute 
a primarily serial function may be moved into software. 
In addition to the functional blocks, the partitioning 
analysis must also review the interface between hardware 
and software to find and remove communication 
bottlenecks. Due to latency between the system 
boundaries and interfaces, system profiling can be used to 
minimize dataflow between the hardware and software. 
By performing this design analysis and enabling rapid re-
partitioning, the SCSD methodology can be used to 
improve design performance and efficiency. 
 
A key to making this FPSoC design methodology 
successful is the ability to easily retarget code between 
software and hardware implementations. In addition to 
using C-based languages to converge hardware and 
software modeling practices, the difference in hardware 
and software interfaces must be addressed. Typically, the 
FPGA logic is connected to the microprocessor in a 
memory mapped or programmed I/O fashion. This 
creates the need to redevelop individual communication 
protocols and data marshalling routines for each 
functional block that is moved between hardware and 
software. This problem is overcome in the SCSD 
methodology by using an API interface to insert an 
abstraction layer between the application code and the 
hardware-software interface.  
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Figure 2: DSM provides an abstraction layer that 
simplifies the retargeting of code between hardware and 

software implementations. 
 
The Celoxica Data Streaming Manager (DSM) provides 
this API for use between Handel-C representations of 
hardware and ANSI-C software models. DSM offers a 
simple and transparent interface for transferring multiple 
independent streams of data between hardware and 



software (see Figure 2).  DSM simplifies system 
partitioning and final implementation by abstracting away 
the interface issues, allowing hardware and software 
descriptions to share common code and communicate 
through simple system calls. The DSM API provides a 
structure that minimizes the overhead to this approach 
and can be easily retargeted to support different 
processors. The DSM portability means that multiple 
partitions can be rapidly evaluated and verified with the 
original system models used as a test bench.  
 
3.3 Co-verification 
 
Much has been written regarding system level 
verification strategies and this paper supports the view 
that functional verification should be done up front in the 
design process.  The Software-Compiled System Design 
methodology is compatible with specification-driven 
system verification strategies. The methodology can be 
described as a functional design process (see Figure 3). 
The design starts with the specification, and continues 
with representations derived from the original models. A 
common test suite may be used to verify the functionality 
at all levels of the design. The end result of the SCSD 
methodology is a functionally correct design model that 
can be compiled directly into FPSoC designs. 
 

 
 

Figure 3: The SCSD methodology supports a 
specification-driven system verification design flow 

 
To support RTL hand-off to traditional implementation 
flows, the SCSD methodology also outputs functionally 
verified HDL models. Using this process, functional 
correctness is developed at a high-level of abstraction, 
and maintained via a reference test suite throughout 
implementation. System performance is also addressed 
through the SCSD methodology by using profiling and 
partitioning. This solves major verification and 
performance issues at the system level, using more 

efficient levels of abstraction, and significantly reduces 
the pressure on the RTL implementation flow. 
 
Co-verification technology is critical to the success of the 
SCSD methodology to support simulation of multiple 
languages and multiple design levels. Using this 
approach, C-based representations at the system 
algorithm level may be simulated simultaneously with 
RTL hardware representations and software device 
drivers. The simulation environment must be capable of 
verifying the models in all the various C-based system 
representations. The verification environment should also 
handle verification of all the models generated during 
system design. This generally requires connected co-
simulation between RTL simulators, system-level 
simulators and software Instruction Set Simulator (ISS) 
environments. Models of algorithms from a 
Matlab/Simulink may be run with existing hardware 
models in VHDL, or with programs running on the 
processor in an ISS.  This allows the designers to 
modulate the abstraction levels to efficiently simulate the 
entire system design at each stage of the verification 
process.    
 
Celoxica implements the SCSD methodology with their 
Nexus-PDK environment to provide both multi-level and 
multi-language co-verification. When debugging system 
performance, it is important that the design verification 
environment provide a path for both re-partitioning of the 
system, and for direct implementation to hardware. 
Nexus-PDK provides a cycle-accurate simulation 
environment that allows ANSI-C programs (representing 
system software) and Handel-C applications 
(representing hardware modules) to interact using DSM. 
The tool also provides multi-language support for C, 
C++, SystemC and Handel-C simulation; and third-party 
co-verification with HDL and ISS simulation, enabling 
simulation of complete systems. To support partitioning 
with co-verification, a utility monitors the data passing 
between applications during simulation. The API 
functionality used with the SCSD methodology allows 
system verification to begin immediately and continue 
seamlessly throughout the functional design process. 
Once the functional design is completed, it can easily be 
transferred to a target FPSoC platform for final testing 
and implementation.  
 
3.4 Direct Compilation 
 
To make co-design and co-verification successful, the 
methodology must provide a direct, simple, and proven 
path to implementation.  This path should also support 
the convergence of the hardware and software 
methodologies so that functionality and performance can 
be addressed at the system level, instead of at low levels 
of abstraction. Just as embedded software portions of a 



system design are compiled to run on a processor, the 
hardware portions may be ‘compiled’ directly for 
implementation into FPGA logic.  
 
For Software-Compiled System Design, Celoxica has 
worked with partners to develop a direct flow for FPSoC 
devices. The DK Design Suite compiles C-based 
descriptions of hardware directly into FPGA logic. Figure 
4 shows the interaction of the combined tool set 
implementing this flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Tool and data interaction in the Software-
Compiled System Design flow implementing FPSoC 
 
The SCSD methodology provides an ideal environment 
for the rapid development of FPSoC applications. Due to 
the benefits of system partitioning and verification, 
excellent quality of results can be achieved, substantially 
beating the results of RTL flows where designers can 
spend their time optimizing a poor system partition. 
 
3.5 Methodology Benefits 
 
Fusing the techniques of hardware and software 
methodologies provides significant benefits to designers 
of FPSoC devices and other systems containing both 
hardware and embedded processors. The SCSD 
methodology makes it possible to: 
 

• Prototype the system and easily explore the 
design space to identify the optimal design 
solution; 

• Partition and re-partition at any time in the 
design cycle; 

• Drive system verification from the specification 
throughout the functional design process; 

•  Modulate the design abstraction levels for 
optimal simulation efficiency; 

• Generate human-readable VHDL and Verilog 
representations of the hardware from C-based 
descriptions; 

•  Directly compile FPGA hardware from C-based 
descriptions for fast design implementation and 
iteration. 

 
The design case study cited below provides an example 
of the benefits of Software-Compiled System Design in 
action. 
 
4 Design Case Study: JPEG2000 
 
To demonstrate the abilities of Software-Compiled 
System Design, Celoxica and Xilinx partnered on the co-
design of a JPEG2000 for implementation in a Virtex II 
Pro device.  In particular, we set out to address the design 
challenge of system partitioning, co-verification, and the 
ease of hardware and software integration. 
 
JPEG2000 is a standards-based image-coding system that 
uses state-of-the-art compression techniques based on 
wavelet technology. Its architecture lends itself to a range 
of uses from consumer electronics such as digital 
cameras, through to medical imaging, remote sensing, 
surveillance systems and scanners. 
 
The major engineering goals for this project were to 
maximize the overall system performance while 
demonstrating an efficient and effective co-design 
environment for FPSoC design. The JPEG2000 project 
used an ANSI-C software specification as the starting 
point for the system design and employed Software-
Compiled System Design using Celoxica, Wind River 
and Xilinx tools to implement the methodology. The 
project was completed in four phases with verification 
continuously applied at each stage: Profile, Partition, 
Design, and Implement. The design was completed with 
one engineer over the course of about 2 working weeks. 
 
4.1 Phase 1: Profile and Verify 
 
The project started with the JPEG2000 ANSI-C source 
code, an application that could benefit from acceleration 
and flexibility of the FPSoC hardware solution.  This 
code was considered the functional specification for this 
design. This example is not unique, as a multitude of 
similar applications could also benefit from the SCSD 
methodology. 
 

Altera Excalibur 



To drive the system verification flow, the JPEG2000 
specification code was simulated as software through an 
appropriate processor target, in this case the IBM 
PowerPC 405GP. From this exercise the functionality of 
the system was simulated and verified to establish a test 
bench that remained constant throughout the design.  
 
The design engineer then performed code profiling to 
establish where the program spent its execution time and 
which functions called other functions during execution. 
This profiling quickly identified the compute-intensive 
functions in the program. Using Wind River’s WindView 
visualization and diagnostic tool, the DWT (Discrete 
Wavelet Transform) and Tier 1 encoder were determined 
to be the processor-intensive functions, consuming 87% 
of processing time (see Figure 5). Those two functions 
were selected for further partitioning and analysis.  
 

 
 

Figure 5: WindView trace of the JPEG2000 algorithm 
 
4.2 Phase 2: Partition and Verify 
 
Software-Compiled System Design is unique in 
providing the designer with a flexible partitioning 
methodology linked to system verification. Using the 
Celoxica tools and DSM technology the designer can 
confidently explore and innovate in the design space to 
identify the optimal system partition for the best Quality 
of Design (QoD).  
 
In the JPEG2000 project, DSM validated the profiling 
information determined in Phase 1 of the design. Using 
DSM, the design engineer analyzed the data flow, burst 
length and frequency between the hardware and software 
and fine-tuned the partition to optimize the project goals. 
The DSM API facilitated the process of design 
partitioning between hardware and software (see Figure 
6). 
 

 
 

 
 

Figure 6:  DSM is used to ease the process of moving 
design functionality between software (ANSI-C) and 

hardware (Handel-C) representations 
 
4.3 Phase 3: Design and Verify 
 
With the optimal partition determined and verified, the 
optimization of the design began. With SCSD, the 
performance and size optimization can be done by 
combining hardware and software functionality, looking 
at the system in its entirety. Optimizations of the 
JPEG2000 software included combining multiple 
function calls into single calls. Blocks destined for 
hardware were optimized by employing more parallelism, 
and editing functions to infer pipelining and efficient 
hardware constructs. 
 
DSM was used to provide a cycle-accurate simulation 
environment that allowed the hardware and software to 
interact, keeping them connected throughout design 
optimization. The software in the system was run as a 
native executable on a PC, with the hardware being run in 
C and Handel-C using the simulation capabilities of 
Celoxica’s Nexus-PDK. Co-simulation between the 
hardware and software was performed in tandem the 
Wind River Tornado environment (see Figure 7).  
 



 
 

Figure 7: Celoxica’s Nexus-PDK and the Wind River 
Tornado environment running co-verification of the 

system hardware and software in tandem 
 
Since the system specification was described in ANSI-C, 
the designer implemented the software in ANSI-C, and 
added Handel-C hardware extensions to the code to 
represent the hardware. These extensions provided 
efficient control over the area, timing, clocks, RAM, 
ROM and interfaces of the FPGA logic.   
 
4.4 Phase 3b: Specification Change 
 
At this stage in the design a specification change was 
introduced. A novel lifting algorithm was developed that 
performs a two-dimensional DWT to improve processing 
time. The algorithm was readily available as an HDL IP 
block and the decision was made, in the context of 
minimizing time and maximizing IP investment, to 
integrate the IP into the design as a black box.  The 
integration was simplified by using the ‘interface’ 
declaration from a Handel-C block in order to connect the 
third-party IP, complete with RTL co-verification, into 
the Software-Compiled System Design flow.  
 
4.5 Phase 4: Implement and Verify 
 
The target platform for the JPEG2000 project was the 
Wind River SBC405GP and Proteus FPGA daughter 
card, a Virtex II Pro prototyping platform. The design 
was implemented in this environment for timing 
simulation, emulation and block optimization. Final 
implementation was retargeted to the Virtex II Pro 
ML300 evaluation platform.  
 
Re-targeting from the development platform to the final 
evaluation platform was simplified using the Celoxica 
Platform Abstraction Layer (PAL), which provides an 
API to shield the application code from the low-level 
hardware interfaces. This built on a library of low-level 
interfaces specific to each target platform called the 
Platform Support Library (PSL), which was accessed 

using the PAL API by the Handel-C application code 
representing this FPGA logic. 
 
Software object code for the PowerPC processor was 
compiled directly from C into the PPC405GP under 
VxWorks.  The hardware implementation was compiled 
directly from Handel-C using the EDIF output generated 
by the Celoxica DK Design Suite.  This EDIF netlist was 
optimized for Virtex II Pro for maximum efficiency and 
best Quality of Results (QoR).  The DK Design Suite also 
produced VHDL and Verilog output of this design 
hardware, though the RTL path was not used for 
implementation this project. 
 
4.6 Design Results 
 
The DWT results for the JPEG2000 project are shown 
below in Table 1.  These results are compared against the 
performance of the handcrafted VHDL authored by a 
JPEG2000 domain expert. The Software-Compiled 
System Design methodology provided a systematic 
approach to the problem leading to not only substantial 
savings in design time, but also to improved design 
quality.  
 
To achieve the results, the DWT portion of the JPEG2000 
design was compiled directly from Handel-C to FPGA 
hardware. The design was optimized to achieve 
maximum system speed while maintaining or reducing 
the hardware utilization area. To validate the 
methodology, the results were compared against the same 
DWT functionality as originally hand-coded in VHDL. 
Using the SCSD methodology, the designer was able to 
achieve a comparable size design with faster performance 
results in less time. 
 

JPEG2000 Original Celoxica SCSD
Results (VHDL) Pass 1 Pass 2 Final Results

Slices 800 646 546 758**
Device Util. 7% 6% 5% 7%
Speed (MHz) 128 110 130 151
Lines of code 435 386 386 395
Design time (days) 20* 6 7 (6+1) 7 (6+1)

*VHDL design time does not include partitioning
**Final SCSD result Includes HDL IP block  

 
Table 1: JPEG2000 case study DWT function 

implementation metrics 
 
The engineer on this JPEG2000 project, while an expert 
in Celoxica tools and Handel-C implementation, had no 
prior experience with the JPEG2000 algorithm and yet 
was able to translate the algorithm into a working 
hardware implementation in less than half the time of the 



original VHDL implementation. The engineer also easily 
met the system design constraints for size and 
performance as seen in the table of results.  
 
The difference is that with the SCSD methodology the 
designer was able to work at a higher, more efficient 
level of abstraction, and then concentrate on optimizing 
the entire system. These results provide clear validation 
of the SCSD methodology raising the level of abstraction 
to increase designer productivity without compromising 
design quality or performance. 
 
5 Conclusion 
 
Software-compiled System Design is a proven 
methodology for the design of programmable systems. It 
employs high levels of abstraction through the use of C-
based design languages to provide solutions for system 
partitioning, co-verification and the integration of 
hardware and software into FPSoC devices.    
 
The Celoxica implementation of the SCSD methodology 
connecting the DK Design Suite to common embedded 
software and FPGA design tools provided the tool set for 
a real-life system design test.  The performance results 
from this test demonstrated significant improvements in 
overall design productivity, while also improving system 
performance and quality of design. Overall improvements 
in the quality of design were realized by informed and 
accurate partitioning decisions. Better up front system 
verification and direct compilation to FPGA hardware 
improved the design productivity. Finally, the system 
methodology allowed the designer to find speed and area 
optimizations in the system by analyzing the entire design 
including interactions between the FPGA logic in the 
microprocessor.  
 
The bottom line is that the Software-Compiled System 
Design methodology offers real competitive advantages 
for designers of programmable systems.   
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