
Software-Compiled System Design: A Methodology for Field-
Programmable System-on-Chip Design

Jeff Jussel and Chris Sullivan

Celoxica Ltd., Abingdon, Oxfordshire, UK

Abstract

With the proliferation of Field-Programmable System-on-
Chip (FPSoC) devices such as Altera Excalibur and
Xilinx Virtex II Pro, more system integrators are now
facing the challenge of merging hardware and software
design. This paper describes software-compiled system
design, a methodology supporting the design of
electronics containing both programmable logic and
software-driven microprocessors. To facilitate hardware
and software design convergence, this methodology
includes C-based design descriptions, hardware/software
co-design partitioning and analysis, multi-level and
multi-language co-verification, and direct compilation to
programmable logic. The paper presents a practical
implementation of this methodology using the Celoxica
DK Design Suite of tools as well as a design example
employing a JPEG2000 algorithm.

1 Introduction

As FPGAs have developed from logic prototyping
devices into fundamental system elements, there has been
enthusiasm for the concept of using high-performance
processors, closely coupled to – or immersed inside – the
FPGA fabric to create a Field Programmable System-on-
Chip (FPSoC).

In the FPSoC architecture, the microprocessor typically
runs system applications while the FPGA manages
computationally intensive tasks. The availability of both
processor and the equivalent of millions of gates of
programmable logic give designers new opportunities to
quickly develop, prototype and implement complete
systems, delivering both better performance and
flexibility.

As FPSoC entails hardware and software design, these
complete system devices also present designers with all
the challenges of system design. In this paper we will
explore these design challenges, and present a description
of a methodology created to address those challenges,
Software-Compiled System Design. The paper also
presents a system design example implementing a
complex design example on an FPSoC device as
validation of this methodology.

The paper necessarily also provides brief descriptions of
the tool set used to implement the methodology for this
design example. Though Celoxica developed this
methodology and provides a set of tools to support it, the
methodology itself is independent of any particular
design language or tool vendor. The vision is to represent
a methodology entailing successful system design
practices that may be applied to all system designs that
include custom logic and software-driven
microprocessors. As the Software-Compiled System
Design methodology provides a direct path from higher-
level languages, through co-design and co-verification to
direct implementation of FPGA logic, the methodology is
especially beneficial for FPSoC design.

2 Challenges of System Level Design

Not too long ago the challenges of system design were
mainly discussed in the context of System-on-Chip (SoC)
devices that combined millions of gates with embedded
processors. However, in the unrelenting march of
Moore’s law, programmable logic designers now have
the opportunity to put millions of gates into FPGA
devices. Many of them are doing just that as half of
FPGA designs now include over 500K gates1. As design
complexity increases, so does the adoption of higher-
level languages – some simulation usage of C and C++ is
now included in 74% of designs1. The propagation of
FPSoC devices combining mega-logic with embedded
processors will further spur the demand for system design
tools that improve design productivity while maintaining
quality of results (QoR).

Traditionally FPGA hardware is designed using
techniques, methodologies, and languages borrowed from
ASIC design2. Software development is undertaken
using techniques, methodologies, and languages designed
to describe software systems. There has been a divide
between the disciplines and it is obvious that hardware
and software methodologies do not talk together3.

As an example, current methods for embedded systems
design require that hardware and software be specified
and designed separately. System specifications typically
use C or C++ and then create a paper document that
delegates the functional design to the respective hardware
and software teams. The design implementation is then

coded in different languages. The software team
maintains the use of C or C++, while the hardware team
translates the paper specification into VHDL or Verilog.
This process precludes co-design and the partitioning is
often decided a priori based only on historical divisions.
And once the partition decisions are made they can not be
revisited, as changes to the partition can necessitate
expensive redesign of both the hardware and software,.
System verification in this process is similarly hindered
by the gap between the hardware design flow and the
original specification. The lack of continuity and direct
implementation between design phases necessitates
exhaustive functional re-verification at every step.

The deficiencies of the current state of system design are
clear:

• Lack of a unified hardware-software
representation leads to difficulties in verification
of the entire system, and to incompatibilities
across the hardware-software boundary;

• Defining system partitions in advance leads to
sub-optimal designs or requires costly redesign;

• Hardware implementations of the system
specification require time-consuming and
possibly error-prone rewriting into HDL;

• Lack of a well-defined and flexible co-design
methodology makes specification revision
difficult and affects time to market.

3 Software-Compiled System Design

To address the challenges of system-level design
generally, and FPSoC specifically, we present Software-
Compiled System Design (SCSD), a methodology
converging hardware and software techniques in the
design of electronic systems. This methodology provides
a cohesive path from system specification and functional
algorithm identification, through partitioning and
verification, to system implementation. The resulting
output is a functionally verified design implemented in an
FPSoC device.

Software-Compiled System Design is defined by the
existence of four elements in the design process. First, the
algorithm design begins with functional modeling using
higher-level language (HLL) design descriptions.
Specifically the system descriptions utilize C-based
languages such as C, C++, SystemC, SpecC or Handel-C
to name a few of the options available to designers. Next
using the SCSD methodology, the designer flexibly
partitions the design between hardware and software,
finding the optimal split before beginning
implementation. To meet the third requirement in the
SCSD methodology, the system is verified at the highest
level to create a functionally correct design before

implementation. Finally, the SCSD methodology lives up
to the ‘software-compiled’ portion of its name by
providing direct paths to implementation through
compilation from C-based descriptions into both software
and hardware.

The high-level representation of the Software-Compiled
System Design flow is shown in Figure 1 as it is
implemented using the Celoxica DK Design Suite.

Figure 1: The Software-Compiled System Design flow

3.1 C- based Descriptions

The success of the SCSD methodology is predicated on
the use of higher-level language descriptions for system
functionality. The exact language used for modeling at
this level is less important than the capability to provide
compatibility with system architectural analysis and to
support easier, verifiable partitioning.

The SCSD methodology supports C-based descriptions
that are able to represent the functionality of a design
block, independent of the eventual implementation in
either hardware or software. While VHDL and Verilog
are mature and capable hardware description languages,
they are not optimal for compiling software elements of
the design to run on processors. C-based description
languages enable a common development path between
hardware and software elements of the design. This trait
of the SCSD methodology allows designers to easily
target and retarget functionality between hardware and
software implementations.

Often C-based languages are also the functional modeling
language of choice for system architects due to their high
level of abstraction and interdisciplinary acceptance.
Algorithmic models developed in C, or generated from a
Matlab/Simulink environment may be used to drive the
design. By using these descriptions as the source for
functional implementation, the SCSD methodology
avoids time-consuming and potentially error prone
translations from paper specifications.

There are many C-based languages that could fulfill the
requirements for software-compiled system design. So
for modeling both hardware and software or maintaining
continuity from the algorithm development, the SCSD
methodology supports many C-based languages for
system functional development. In the Celoxica
implementation of the SCSD methodology users have
found benefit modeling systems in C, C++, SystemC,
SpecC and Handel-C, often employing different
languages for different blocks in a mixed-language
environment to take advantage of specific modeling
strengths in the languages, or to avoid re-writing existing
IP. However, as the system design gets closer to
implementation, the tools often dictate the specific
language for compilation. Embedded software is
compiled into the processor from C or C++. Similarly,
the Celoxica tool flow employs Handel-C as a simplified
route for direct compilation of FPSoC hardware using
ANSI-C syntax with simple hardware implementation
directives.

3.2 Co-design and Partitioning

Fundamental elements of any co-design methodology,
profiling and partitioning are used to help identify
optimal design methods early in the design cycle. In the
software world, the profiler is used as an analysis tool to
examine run time behavior of a program. Applying a
similar approach, the profiler in the SCSD methodology
can help find the optimal system partition by analyzing
hardware and software performance and the interfaces
between the two.

Software-Compiled System Design provides a practical
means for the co-design of hardware and software.
System functionality is developed using technology-
neutral C-based descriptions to create a working model of
the design. The design is then divided into blocks
representing functions that will be implemented in either
hardware or software. Using the system specification as a
driver, the performance of these blocks and their
interaction can be analyzed through profiling tools.

Software block analysis checks for efficient utilization of
the processor and performance bottlenecks where
parallelization may be added by moving the function into

hardware. Hardware blocks are analyzed for execution
throughput and the hardware efficiency (gates or FPGA
elements). Hardware blocks that are too large or execute
a primarily serial function may be moved into software.
In addition to the functional blocks, the partitioning
analysis must also review the interface between hardware
and software to find and remove communication
bottlenecks. Due to latency between the system
boundaries and interfaces, system profiling can be used to
minimize dataflow between the hardware and software.
By performing this design analysis and enabling rapid re-
partitioning, the SCSD methodology can be used to
improve design performance and efficiency.

A key to making this FPSoC design methodology
successful is the ability to easily retarget code between
software and hardware implementations. In addition to
using C-based languages to converge hardware and
software modeling practices, the difference in hardware
and software interfaces must be addressed. Typically, the
FPGA logic is connected to the microprocessor in a
memory mapped or programmed I/O fashion. This
creates the need to redevelop individual communication
protocols and data marshalling routines for each
functional block that is moved between hardware and
software. This problem is overcome in the SCSD
methodology by using an API interface to insert an
abstraction layer between the application code and the
hardware-software interface.

Processor

S-DSM

FPGA

Hardware DSM Library

Handel-C
program

Handel-C
program

Application Application

Hardware Bus Controller

Software Bus Controller

Figure 2: DSM provides an abstraction layer that
simplifies the retargeting of code between hardware and

software implementations.

The Celoxica Data Streaming Manager (DSM) provides
this API for use between Handel-C representations of
hardware and ANSI-C software models. DSM offers a
simple and transparent interface for transferring multiple
independent streams of data between hardware and

software (see Figure 2). DSM simplifies system
partitioning and final implementation by abstracting away
the interface issues, allowing hardware and software
descriptions to share common code and communicate
through simple system calls. The DSM API provides a
structure that minimizes the overhead to this approach
and can be easily retargeted to support different
processors. The DSM portability means that multiple
partitions can be rapidly evaluated and verified with the
original system models used as a test bench.

3.3 Co-verification

Much has been written regarding system level
verification strategies and this paper supports the view
that functional verification should be done up front in the
design process. The Software-Compiled System Design
methodology is compatible with specification-driven
system verification strategies. The methodology can be
described as a functional design process (see Figure 3).
The design starts with the specification, and continues
with representations derived from the original models. A
common test suite may be used to verify the functionality
at all levels of the design. The end result of the SCSD
methodology is a functionally correct design model that
can be compiled directly into FPSoC designs.

Figure 3: The SCSD methodology supports a
specification-driven system verification design flow

To support RTL hand-off to traditional implementation
flows, the SCSD methodology also outputs functionally
verified HDL models. Using this process, functional
correctness is developed at a high-level of abstraction,
and maintained via a reference test suite throughout
implementation. System performance is also addressed
through the SCSD methodology by using profiling and
partitioning. This solves major verification and
performance issues at the system level, using more

efficient levels of abstraction, and significantly reduces
the pressure on the RTL implementation flow.

Co-verification technology is critical to the success of the
SCSD methodology to support simulation of multiple
languages and multiple design levels. Using this
approach, C-based representations at the system
algorithm level may be simulated simultaneously with
RTL hardware representations and software device
drivers. The simulation environment must be capable of
verifying the models in all the various C-based system
representations. The verification environment should also
handle verification of all the models generated during
system design. This generally requires connected co-
simulation between RTL simulators, system-level
simulators and software Instruction Set Simulator (ISS)
environments. Models of algorithms from a
Matlab/Simulink may be run with existing hardware
models in VHDL, or with programs running on the
processor in an ISS. This allows the designers to
modulate the abstraction levels to efficiently simulate the
entire system design at each stage of the verification
process.

Celoxica implements the SCSD methodology with their
Nexus-PDK environment to provide both multi-level and
multi-language co-verification. When debugging system
performance, it is important that the design verification
environment provide a path for both re-partitioning of the
system, and for direct implementation to hardware.
Nexus-PDK provides a cycle-accurate simulation
environment that allows ANSI-C programs (representing
system software) and Handel-C applications
(representing hardware modules) to interact using DSM.
The tool also provides multi-language support for C,
C++, SystemC and Handel-C simulation; and third-party
co-verification with HDL and ISS simulation, enabling
simulation of complete systems. To support partitioning
with co-verification, a utility monitors the data passing
between applications during simulation. The API
functionality used with the SCSD methodology allows
system verification to begin immediately and continue
seamlessly throughout the functional design process.
Once the functional design is completed, it can easily be
transferred to a target FPSoC platform for final testing
and implementation.

3.4 Direct Compilation

To make co-design and co-verification successful, the
methodology must provide a direct, simple, and proven
path to implementation. This path should also support
the convergence of the hardware and software
methodologies so that functionality and performance can
be addressed at the system level, instead of at low levels
of abstraction. Just as embedded software portions of a

system design are compiled to run on a processor, the
hardware portions may be ‘compiled’ directly for
implementation into FPGA logic.

For Software-Compiled System Design, Celoxica has
worked with partners to develop a direct flow for FPSoC
devices. The DK Design Suite compiles C-based
descriptions of hardware directly into FPGA logic. Figure
4 shows the interaction of the combined tool set
implementing this flow.

Figure 4: Tool and data interaction in the Software-
Compiled System Design flow implementing FPSoC

The SCSD methodology provides an ideal environment
for the rapid development of FPSoC applications. Due to
the benefits of system partitioning and verification,
excellent quality of results can be achieved, substantially
beating the results of RTL flows where designers can
spend their time optimizing a poor system partition.

3.5 Methodology Benefits

Fusing the techniques of hardware and software
methodologies provides significant benefits to designers
of FPSoC devices and other systems containing both
hardware and embedded processors. The SCSD
methodology makes it possible to:

• Prototype the system and easily explore the
design space to identify the optimal design
solution;

• Partition and re-partition at any time in the
design cycle;

• Drive system verification from the specification
throughout the functional design process;

• Modulate the design abstraction levels for
optimal simulation efficiency;

• Generate human-readable VHDL and Verilog
representations of the hardware from C-based
descriptions;

• Directly compile FPGA hardware from C-based
descriptions for fast design implementation and
iteration.

The design case study cited below provides an example
of the benefits of Software-Compiled System Design in
action.

4 Design Case Study: JPEG2000

To demonstrate the abilities of Software-Compiled
System Design, Celoxica and Xilinx partnered on the co-
design of a JPEG2000 for implementation in a Virtex II
Pro device. In particular, we set out to address the design
challenge of system partitioning, co-verification, and the
ease of hardware and software integration.

JPEG2000 is a standards-based image-coding system that
uses state-of-the-art compression techniques based on
wavelet technology. Its architecture lends itself to a range
of uses from consumer electronics such as digital
cameras, through to medical imaging, remote sensing,
surveillance systems and scanners.

The major engineering goals for this project were to
maximize the overall system performance while
demonstrating an efficient and effective co-design
environment for FPSoC design. The JPEG2000 project
used an ANSI-C software specification as the starting
point for the system design and employed Software-
Compiled System Design using Celoxica, Wind River
and Xilinx tools to implement the methodology. The
project was completed in four phases with verification
continuously applied at each stage: Profile, Partition,
Design, and Implement. The design was completed with
one engineer over the course of about 2 working weeks.

4.1 Phase 1: Profile and Verify

The project started with the JPEG2000 ANSI-C source
code, an application that could benefit from acceleration
and flexibility of the FPSoC hardware solution. This
code was considered the functional specification for this
design. This example is not unique, as a multitude of
similar applications could also benefit from the SCSD
methodology.

Altera Excalibur

To drive the system verification flow, the JPEG2000
specification code was simulated as software through an
appropriate processor target, in this case the IBM
PowerPC 405GP. From this exercise the functionality of
the system was simulated and verified to establish a test
bench that remained constant throughout the design.

The design engineer then performed code profiling to
establish where the program spent its execution time and
which functions called other functions during execution.
This profiling quickly identified the compute-intensive
functions in the program. Using Wind River’s WindView
visualization and diagnostic tool, the DWT (Discrete
Wavelet Transform) and Tier 1 encoder were determined
to be the processor-intensive functions, consuming 87%
of processing time (see Figure 5). Those two functions
were selected for further partitioning and analysis.

Figure 5: WindView trace of the JPEG2000 algorithm

4.2 Phase 2: Partition and Verify

Software-Compiled System Design is unique in
providing the designer with a flexible partitioning
methodology linked to system verification. Using the
Celoxica tools and DSM technology the designer can
confidently explore and innovate in the design space to
identify the optimal system partition for the best Quality
of Design (QoD).

In the JPEG2000 project, DSM validated the profiling
information determined in Phase 1 of the design. Using
DSM, the design engineer analyzed the data flow, burst
length and frequency between the hardware and software
and fine-tuned the partition to optimize the project goals.
The DSM API facilitated the process of design
partitioning between hardware and software (see Figure
6).

Figure 6: DSM is used to ease the process of moving
design functionality between software (ANSI-C) and

hardware (Handel-C) representations

4.3 Phase 3: Design and Verify

With the optimal partition determined and verified, the
optimization of the design began. With SCSD, the
performance and size optimization can be done by
combining hardware and software functionality, looking
at the system in its entirety. Optimizations of the
JPEG2000 software included combining multiple
function calls into single calls. Blocks destined for
hardware were optimized by employing more parallelism,
and editing functions to infer pipelining and efficient
hardware constructs.

DSM was used to provide a cycle-accurate simulation
environment that allowed the hardware and software to
interact, keeping them connected throughout design
optimization. The software in the system was run as a
native executable on a PC, with the hardware being run in
C and Handel-C using the simulation capabilities of
Celoxica’s Nexus-PDK. Co-simulation between the
hardware and software was performed in tandem the
Wind River Tornado environment (see Figure 7).

Figure 7: Celoxica’s Nexus-PDK and the Wind River
Tornado environment running co-verification of the

system hardware and software in tandem

Since the system specification was described in ANSI-C,
the designer implemented the software in ANSI-C, and
added Handel-C hardware extensions to the code to
represent the hardware. These extensions provided
efficient control over the area, timing, clocks, RAM,
ROM and interfaces of the FPGA logic.

4.4 Phase 3b: Specification Change

At this stage in the design a specification change was
introduced. A novel lifting algorithm was developed that
performs a two-dimensional DWT to improve processing
time. The algorithm was readily available as an HDL IP
block and the decision was made, in the context of
minimizing time and maximizing IP investment, to
integrate the IP into the design as a black box. The
integration was simplified by using the ‘interface’
declaration from a Handel-C block in order to connect the
third-party IP, complete with RTL co-verification, into
the Software-Compiled System Design flow.

4.5 Phase 4: Implement and Verify

The target platform for the JPEG2000 project was the
Wind River SBC405GP and Proteus FPGA daughter
card, a Virtex II Pro prototyping platform. The design
was implemented in this environment for timing
simulation, emulation and block optimization. Final
implementation was retargeted to the Virtex II Pro
ML300 evaluation platform.

Re-targeting from the development platform to the final
evaluation platform was simplified using the Celoxica
Platform Abstraction Layer (PAL), which provides an
API to shield the application code from the low-level
hardware interfaces. This built on a library of low-level
interfaces specific to each target platform called the
Platform Support Library (PSL), which was accessed

using the PAL API by the Handel-C application code
representing this FPGA logic.

Software object code for the PowerPC processor was
compiled directly from C into the PPC405GP under
VxWorks. The hardware implementation was compiled
directly from Handel-C using the EDIF output generated
by the Celoxica DK Design Suite. This EDIF netlist was
optimized for Virtex II Pro for maximum efficiency and
best Quality of Results (QoR). The DK Design Suite also
produced VHDL and Verilog output of this design
hardware, though the RTL path was not used for
implementation this project.

4.6 Design Results

The DWT results for the JPEG2000 project are shown
below in Table 1. These results are compared against the
performance of the handcrafted VHDL authored by a
JPEG2000 domain expert. The Software-Compiled
System Design methodology provided a systematic
approach to the problem leading to not only substantial
savings in design time, but also to improved design
quality.

To achieve the results, the DWT portion of the JPEG2000
design was compiled directly from Handel-C to FPGA
hardware. The design was optimized to achieve
maximum system speed while maintaining or reducing
the hardware utilization area. To validate the
methodology, the results were compared against the same
DWT functionality as originally hand-coded in VHDL.
Using the SCSD methodology, the designer was able to
achieve a comparable size design with faster performance
results in less time.

JPEG2000 Original Celoxica SCSD
Results (VHDL) Pass 1 Pass 2 Final Results

Slices 800 646 546 758**
Device Util. 7% 6% 5% 7%
Speed (MHz) 128 110 130 151
Lines of code 435 386 386 395
Design time (days) 20* 6 7 (6+1) 7 (6+1)

*VHDL design time does not include partitioning
**Final SCSD result Includes HDL IP block

Table 1: JPEG2000 case study DWT function

implementation metrics

The engineer on this JPEG2000 project, while an expert
in Celoxica tools and Handel-C implementation, had no
prior experience with the JPEG2000 algorithm and yet
was able to translate the algorithm into a working
hardware implementation in less than half the time of the

original VHDL implementation. The engineer also easily
met the system design constraints for size and
performance as seen in the table of results.

The difference is that with the SCSD methodology the
designer was able to work at a higher, more efficient
level of abstraction, and then concentrate on optimizing
the entire system. These results provide clear validation
of the SCSD methodology raising the level of abstraction
to increase designer productivity without compromising
design quality or performance.

5 Conclusion

Software-compiled System Design is a proven
methodology for the design of programmable systems. It
employs high levels of abstraction through the use of C-
based design languages to provide solutions for system
partitioning, co-verification and the integration of
hardware and software into FPSoC devices.

The Celoxica implementation of the SCSD methodology
connecting the DK Design Suite to common embedded
software and FPGA design tools provided the tool set for
a real-life system design test. The performance results
from this test demonstrated significant improvements in
overall design productivity, while also improving system
performance and quality of design. Overall improvements
in the quality of design were realized by informed and
accurate partitioning decisions. Better up front system
verification and direct compilation to FPGA hardware
improved the design productivity. Finally, the system
methodology allowed the designer to find speed and area
optimizations in the system by analyzing the entire design
including interactions between the FPGA logic in the
microprocessor.

The bottom line is that the Software-Compiled System
Design methodology offers real competitive advantages
for designers of programmable systems.

References

[1] G. Smith, “ASIC Design Times Spiral Out of

Control”, Gartner Dataquest Research, April 2002
[2] P. Garrault, Synthesis Tool Enhancements for Virtex

Architectures, Xilinx, 2002
[3] G. Smith, “EDA 2002: The Acceleration of RTL

Design”, Gartner Dataquest Research, October 2002

