

Software-Compiled System Design:

A Methodology for Field Programmable System-on-Chip Design

EDP paper presentation Jeff Jussel

April 15, 2003

Methodology Target Devices

- Field Programmable System-on-Chip (FPSoC)
- Definition
 - Over 1 million usable gates in FPGA logic
 - Embedded processor cores
 - On-board peripherals and memory
- Usage
 - Rapid prototypes (verification stage and ASIC RTL sign-off)
 - Low NRE implementation
 - Reconfigurable systems
- Examples
 - Altera Excalibur
 - Apex FPGA (up to 1M gates)
 - NIOS (32/16 bit RISC soft core)
 - ARM922T (32-bit, AMBA)

- Xilinx Virtex-II Pro
 - Virtex-II FPGA (M's gates)
 - MicroBlaze (32 bit RISC soft core)
 - IBM PowerPC 405 (32-bit, Coreconnect)

System Design Challenges

- FPSoC design (as S0C) presents system design challenges
 - Over half of FPGA designs include over 500K gates*
 - Requires convergence of HW/SW methodologies
- Current flow deficiencies
 - Poorly profiled partitions lead to sub-optimal performance
 - Incompatible flow, verification between HW/SW designs
 - Gap between specification and hardware RTL
 - Impact of specification changes

*Source "ASIC Design Times Spiral Out of Control", Gartner, April 2002 JJ, SCSD Methodology, EDP 2003

Software-Compiled System Design

Methodology is defined by:

- Use of higher-level languages (HLL) : eg C, C++, SystemC, Handel-C, SpecC
- Partitioning in common language before HW or SW implementation
- Verification driven from system specification
- Direct implementation path from HLL descriptions to HW and SW

Celoxica Embedded HW/SW Design Process

Software-Compiled System Design Flow

System Design Functions:

Co-design

 Provide rapid iteration of partitioning decisions throughout flow

Co-verification

 Drive continuous system verification from concept to hardware

C to RTL

 Generate human-readable VHDL and Verilog for ASIC RTL hand-off

C to FPGA (FPSoC)

 Enable direct implementation to device optimized programmable logic

System Co-design

HW-SW Partition and Profiling

- Determine the optimal design partition at the system level
- Profile system hardware, software and interface performance
- Retarget code between hardware and software using DSM API
- Iterate solutions to explore the design space
- Deliver optimal Quality of Design (QoD)

DSM API assists code retargeting

tware-to-Hardware				Hardware-to-Software			
<u> </u>	20 3		,	<u> </u>	2 0 3	4 🥝	
Addr	Hex	Dec	ASCII	Addr	Hex	Dec	ASCII
• 0x00001029	OEBO383E	246429758	8>	• 0x00001028	2D665F8C	761683852	-f
🕈 0x0000102A	328769DA	847735258	2 1	Ox00001029	OEBO383F	246429759	8?
0x0000102B	779628F1	2006329585	w (◆0x0000102A	328769DB	847735259	2 i
• 0x0000102C	483D4C6F	1211976815	H=Lo	0x0000102B	779628F2	2006329586	ษ (
🗢 0x0000102D	4AD96FB4	1255763892	Jo	0x0000102C	483D4C70	1211976816	H=Lp
0x0000102E	292Å1E42	690626114) * B	0x0000102D	4AD96FB5	1255763893	Jо
Ox0000102F	503A1DF6	1345986038	P:	0x0000102E	292A1E43	690626115) * C
0x00001030	543353E4	1412649956	T3S	0x0000102F	503A1DF7	1345986039	P:
Ox00001031	3FF36155	1072914773	? aU	Ox00001030	543353E5	1412649957	T3S
0x00001032	16784178	376979832	XAX	Ox00001031	3FF36156	1072914774	2 aV
• 0x00001033	3C4935BE	1011430846	<15	0x00001032	16784179	376979833	xAy
0x00001034	71897DFF	1904836095	q)	0x00001033	3C4935BF	1011430847	<15
Ox00001035	096102D6	157352662	a	• 0x00001034	71897E00	1904836096	q~
0x00001036	31D70BDA	836176858	1	Ox00001035	096102D7	157352663	a
0x00001037	77542899	2002004121	wT (Ox00001036	31D70BDB	836176859	1
0x00001038	49686189	1231579785	Ihj	Ox00001037	7754289A	2002004122	wT (
Ox00001039	32853F41	847593281	2 7 A	Ox00001038	49686A8A	1231579786	Ihj
• 0x0000103A	42CF75B9	1120892345	Bu _	Ox00001039	32853F42	847593282	2 7B

DSM monitor assists debug

DSM – Data Streaming Manager

- Supports the SCSD partitioning methodology
- DSM is BUS/ interconnect and OS independent
- An interface for transferring multiple independent streams of data between hw & sw
- Provides a functionally accurate simulation environment

System Co-verification

System Verification Environment

- Drive verification flow from C-based system specifications
- Speed system simulations by modulating model abstraction levels
- Multiple language simulation support for C, C++, SystemC, SpecC, Handel-C, VHDL, Verilog
- Simulate with Matlab/Simulink models
- Reduces verification time, risk and cost

Co-simulation between ISS software environment, RTL simulators and Nexus-PDK

Direct FPSoC Implementation

C to FPGA

- Directly compile C to optimized EDIF output for programmable logic
- Delivers efficient FPSoC hardware and proven QoR
- Fastest route to FPGA logic for cost-efficient rapid prototyping or device production

C to RTL

- Generation of Verilog and VHDL RTL descriptions
- Provides human-readable output for RTL hand-off to ASIC design flows
- Optimized for existing RTL flows to provide direct path from C specifications

Direct System Hardware Implementation from Handel-C

Handel-C extensions to ANSI-C

Handel-C adds constructs to ANSI-C to enable DK to directly implement hardware

- fully synthesizable HW programming language based on ANSI-C
- Implements C algorithm direct to optimized FPGA or outputs RTL from C

Software-only ANSI-C constructs

Recursion Side effects Standard libraries Malloc Floating point

10

Majority of ANSI-C constructs supported by DK

Control statements (if, switch, case, etc.) Integer Arithmetic Functions Pointers Basic types (Structures, Arrays etc.) #define #include Handel-C Additions for hardware

Parallelism Timing Interfaces Clocks Macro pre-processor RAM/ROM Shared expression Communications Handel-C libraries FP library Bit manipulation

JJ, SCSD Methodology, EDP 2003

SCSD Design Case Study: JPEG2000

- Xilinx project benchmark for Platform FPGA (FPSoC)
 - Start with C description of JPEG2000 algorithm
 - Use Software-Compiled System Design methodology
 - Partition and Implement JPEG2000 Design
 - Compare results against original VHDL design performance

JPEG2000 Case Study: Flow Steps

JPEG2000 Case Study: Flow Steps (cont)

Phase 3b: Specification Change

- Import VHDL IP for 2d DWT algorithm
- Treat as black box, called from HC
- Perform RTL/HC/ISS co-simulation

Phase 4: Implement and Verify

- Directly compile HC blocks to EDIF
- Import VHDL IP hard core as EDIF
- Compile SW to PPC under VxWorks
- Xilinx P&R tools for Virtex-II Pro target platform
- Initial platform: Wind River SBC405GP and Proteus FPGA daughter card
- Platform retargeted without app code changes using PAL API
- Final platform: Virtex-II Pro ML300 evaluation platform

JPEG2000 Case Study results

Celoxica 1 st pass		2 nd pass	Final	HDL	Observations
Slices	646	546	758*	800	Comparable
Device utilization	6%	5%	7%	7%	
Speed (MHz)*	110	130	151	128	HC faster
Lines of code	386	395	395	435	
Design time (days)	6	7 (6+1)	7 (6+1)	20*	HC quicker
* Lena used as testbench throu input bit width12, max 1K imag		* Includes IP Block Insertion	 * Doesn't include partitioning spec. development 	Expert vs Novice	

Rapid Handel-C (HC) implementation by an engineer with <u>no prior knowledge</u> of JPEG2000. Primary design focus was <u>area efficiency</u>.

- Common language base made easy porting to hardware of the DWT source & DSM allowed partition, co verification & data to be easily moved between HW & SW
- Optimizations included using signals instead of registers, maximum use of dual ported memory & reduction in routing logic by syntax duplication in Handel-C. Place & Route tools configured to optimize the implementation for area efficiency
- Final implementation integrated existing HDL IP block into the design flow for maximum design re-use value (black boxing)

Celoxica System-Design Summary

Software-Compiled System Design:

System Design Flow Evolution

- Design flow provides design environment for design of FPSoC devices
 - HLL usage
 - Iterative partitioning
 - System-driven verification
 - Direct compilation to FPSoC hardware

Proven Results

 Xilinx JPEG2000 is one example of Quality of Design and Design Productivity achieved using this system methodology and tools

Celoxica

Copyright © 2002 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo, Handel-C and "cutting a LONG story SHORT" are trademarks of Celoxica Limited.All other trademarks acknowledged. The information contained herein is subject to change without notice and is for general guidance only.