
A Verification Synergy:
Constraint-Based Verification

Carl Pixley
Advanced Technology Group
Synopsys, Inc.

John Havlicek
Motorola Inc., Austin

© EDP workshop April 2003

Verification Synergy
• The object of (functional) verification is to

Specify consistent (ideally, comprehensive & complete)
model of behavior using

• Golden model
• Properties

Check compliance of implementation w. specification
• Find bugs

Analyze/locate the cause of bugs
Correct bugs

• Prove correctness

Measure coverage of verification plan and
execution.

© EDP workshop April 2003

Verification Synergy
• Cost-effective verification requires efficient use

of resources:
Information is a critical (the most critical) resource.
Designer’s time is very valuable!

• “Capture once; use repeatedly.”
Human resources
Compute resources

• Tools should work together
Why use two unrelated formats for expressing the
same type of thing?
Example: why should simulation and formal verification
use different formats for safety assertions? Why use
different formats for constraints?

© EDP workshop April 2003

Verification Synergy
• Bus functional model (BFM) / Testbench

synergies
Synthesizable: suitable for emulation
“Flip-able” I.e., equally suitable as drivers or monitors
Completeness possible.
Equally usable for simulation- / emulation-based
verification as with formal verification (e.g., model
checking)
Documentation / Formal description.
Support hierarchical (assume/guarantee) reasoning
Supports coverage analysis and simulation biasing.
Suitable for instruction/transaction level modeling?
Suitable for design synthesis optimization?

© EDP workshop April 2003

What is Constraint-Based
Verification?

• Designers define constraints involving the inputs
of their designs.

• They can immediately simulate their designs with
constraints ONLY and debug wave forms. No
testbench program is needed.

• Constraints and design mature incrementally.
• During integration constraints become monitors

automatically. (Flipping) This supports
assume/guarantee reasoning.

© EDP workshop April 2003

Constraint / Assertion-Based
Methodology

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

Assertions (e.g., OVA, CBV) Verification
Use of Assertions
• Checking results
• Stimulus generation

(Constraint assertions
like SimGen)

• Proving correctness
• Measuring coverage
• Verification IP reuse

Bus
integrity

Logic
integrity

Interface
Compliance

Chip
Function

Micro-logic
function

Reuse of Assertions Among
Simulation, Semi-Formal, and Formal Verification

© EDP workshop April 2003

Constraint Examples
“Inputs 0, 1 & 2 are 0-1-hot”
In0 + In1 + In2 <= 1;
“A transaction start can only be asserted

when the address state machine is in
the idle state.”

ts -> (addr_state = `ADDR_IDLE));
Constraints are just Verilog formulas. It

works fine with OVA, TSP, Verilog or
almost any assertion language.

© EDP workshop April 2003

Generation

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

DUT

Directed
Test Suite

Assertions and
Checkers

Constraints
As Generator

In0 + In1 + In2 <= 1;
ts -> (addr_state = `ADDR_IDLE));

© EDP workshop April 2003

Generation -> Assertion Flipping

High-Speed On-chip Bus

Off-chip
Bus ifc

System-on-Chip

DUT

Directed
Test Suite

Assertions and
Checkers

Constraints
As Assertions

System
Environment

Not Needed if Not Needed if
Assertions have beenAssertions have been

Proven w. model checker!Proven w. model checker!

ts -> (addr_state = `ADDR_IDLE));
In0 + In1 + In2 <= 1;

© EDP workshop April 2003

Constraint-Based Verification

• Enables early, more extensive use of
assertion–based simulation at the unit
level by designers!

-- by lowering the effort to animate a design
block and
by incrementally refining the logic and
constraints

© EDP workshop April 2003

Constraint-Based Verification
• Design Manager:
“My proposal is for designers to test their logic

before releasing it to the verification team. This
will guarantee that we're not fighting
careless/silly errors when the blocks are
integrated in a system environment.

There are two reasons why I would like to follow the
CBV [SimGen] route: 1) all the support you and
your group have provided this past year and a
half, and 2) I believe it would be easier for
designers to use this tool than trying to learn the
[conventional directed-random simulation]
environment along with C++ and everything else.”

© EDP workshop April 2003

Constraint-Based Verification

Low-effort, early animation of design blocks.
The cost of getting started is low.

Designers don't have to write an elaborate test-
bench to begin animating and debugging a block.

Because the development of environments
for designs is incremental, the cost of
developing constraint-based
environments is amortized over time.

© EDP workshop April 2003

Constraint-Based Verification
Constraint-based verification integrates well

with other, existing simulation
approaches.

It can be integrated incrementally into a
verification flow.

Constraints can be developed to monitor
inputs in a directed or directed random
approach. As constraints mature, they
become simulation drivers (E.g.,
Automotive at Motorola).

© EDP workshop April 2003

Simulation & Formal methodology

Constraints can be used both in simulation
and formal verification (model checking).

Constraint-based verification reinforces
assertion-based verification (e.g., OVA –
because constraints ARE assertions.

Constraint-based simulation is unexpectedly
effective in finding corner cases. (See
slides below.)

© EDP workshop April 2003

Constraint-Based Verification
Reuse of constraint verification IP at the

SoC level
1. Constraints can be used with model

checking as environments.
2. Constraint-based generators can be easily

converted into checkers during system
integration.

© EDP workshop April 2003

Constraint-Based Verification
Constraint-based verification simulates

corner cases of designs more effectively
than other methods.

Constraint-based simulation finds bugs
earlier!

Another PPC Design Manager:
“The kind of bugs [CBV/SimGen user] has

found in my logic are difficult to find in
simulation. I do not believe we can guarantee
a high quality first tapeout without [t]his work.”

© EDP workshop April 2003

Directed-Random vs. Constrained-
Random

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

INBOUND PROTOCOL

Directed RandomDirected Random

ConstraintConstraint--basedbased

bugs found# bugs found

bugs found# bugs found

© EDP workshop April 2003

Constrained-random vs. directed
random

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

9
8
7
6
5
4
3
2
1

OUTBOUND - LOGIC LAYER

Directed RandomDirected Random

ConstraintConstraint--basedbased

bugs found# bugs found

bugs found# bugs found

© EDP workshop April 2003

Summary
• Verification Synergy is important for cost-

effective verification, example:
• Constraint-Based Verification

Provides early/easy animation of DUVs by
designers -- without checkers, without stimulus
driver programs, ….
Provides robust stimulus to exercise corner
cases of design
Inputs can be “weighted” to bias simulation
Stimulus generation and checkers are dual
concepts.

© EDP workshop April 2003

Summary (cont.)

• Constraint-Based Verification
Incrementally integrates into existing
simulation environment.
Works with both simulation (VCS & Vera),
formal tools and OVA.
Constraints can be used by designers directly
and incrementally – broader market.
Constraint-based verification finds bugs faster
than other methods.

© EDP workshop April 2003

End of Talk

© EDP workshop April 2003

Benefits
. Constraint-based verification can be put in

the hands of designers at the module,
block and unit levels of design. This
implies a much broader user-base for
formal and simulation tools.

. Verification checkers are left all over the
design to locate and isolate problems near
the bug site.

. Constraints formally document interfaces
to DUVs in a machine-readable way.

© EDP workshop April 2003

Observation

. Complex temporal assertions (full CTL,
LTL) CANNOT be easily reused as
stimulus generators.

© EDP workshop April 2003

Constraint Example

Request

Req_id[0;1]

Req_type[0:2]

Req_prior[0:1]

Response

Resp_id[0:1]

Resp_type[0:1]

XYZ

Assume: A request may be given only if its identifier is not equAssume: A request may be given only if its identifier is not equal toal to
the identifier of any active transaction.the identifier of any active transaction.

© EDP workshop April 2003

Constraint Example
module xyz;
function activate(id[0:1])[0:0] = request &

(req_id == id) ;
function deactivate(id[0:1])[0:0] = response

& (resp_id == id) ;
function active_next(id[0:1])[0:0] =

(deactivate(id) ? 1'b0 :
activate(id) ? 1'b1 :

active[id]) ;

© EDP workshop April 2003

Constraint-based Verification
var active[0:3] =

{active_next(0),
active_next(1),
active_next(2),
active_next(3),
} ;

constraint(request ? ~active[req_id] : 1'b1) ;

© EDP workshop April 2003

Constraint-based Verification
• User provides constraints as Boolean

expressions involving state and inputs.
• User provides biasing for each variable.
• SimGen generates input vectors to

simulator on each clock cycle by solving
constraints -- all together.

• SimGen is non-backtracking!
• SimGen is constant cost for each cycle.

The cost is linear data structures
representing constraints (e.g. BDDs).

© EDP workshop April 2003

SimGen technical issues

• Keeping BDD size low
• Automatic identification of special

constraints that can be handled separately
• Constraint fracturing
• Variable ordering
• Constraint prioritization
• Run-time constraint solving (e.g.,

Shimizu/Dill)

© EDP workshop April 2003

References
• C. Pixley, K. Shultz, J. Yuan, “Integrated Formal and Informal

Design Verification of Commercial Integrated Circuits“, PDPTA,
pp. 1061-1067, June 28, 1999.

• J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz, “Modeling Design
Constraints and Biasing in Simulation Using BDDs”, ICCAD 1999

• J. Kukula and T. Shiple, "Building Circuits from Relations" CAV
2000

• K. Shimizu, D. L. Dill, and A. J. Hu. "Monitor-Based Formal
Specification of PCI", FMCAD 2000, Austin, Texas.

• K. Shimizu, D. L. Dill, C-T. Chou, "A Specification Methodology by
a Collection of Compact Properties as Applied to the Intel Itanium
Processor Bus Protocol", CHARME 2001, Livingston, Scotland.

• M. Kaufmann, A. Martin, C. Pixley, “Design Constraints in
Symbolic Model Checking”, CAV 1998: 477-487

© EDP workshop April 2003

References
• J. Yuan , A. Aziz, K. Albin, C. Pixley, “Faster Boolean Constraint

Solving for Random Simulator-Vector Generation“, ICCAD, 2002.
• K.Shimizu, D. Dill, “Deriving a Simulation Input Generator and a

Coverage Metric from a Formal Specification”, DAC 2002.
• J.Yuan, K. Albin, A.Aziz, C.Pixley, "Constraint Synthesis for

Environmental Modeling in Functional Verification“, (accepted)
DAC 2003.

© EDP workshop April 2003

Common User Assertion Examples

• One-hot buses
• Full and parallel case synthesis pragmas
• Array accesses
• Bus contention
• Valid data not lost in stalled pipelines
• Low priority events eventually processed
• Requests handled within spec’d window
• Packet Valid signal asserted correctly

