A Verification Synergy:
Constraint-Based Verification

Carl Pixley

Advanced Technology Group
Synopsys, Inc.

John Havlicek
Motorola Inc., Austin

[> Jom. pe21Bu b'suum)

Verification Synergy

°* The object of (functional) verification is to
= Specify consistent (ideally, comprehensive & complete)
model of behavior using
« Golden model
* Properties
= Check compliance of implementation w. specification
* Find bugs
» Analyze/locate the cause of bugs

= Correct bugs
* Prove correctness

= Measure coverage of verification plan and
execution.

© EDP workshop April 2003 SY"[]PSYSD

Verification Synergy

* Cost-effective verification requires efficient use
of resources:

= |Information is a critical (the most critical) resource.
Designer’s time is very valuable!

« “Capture once; use repeatedly.”
= Human resources
= Compute resources

* Tools should work together

= Why use two unrelated formats for expressing the
same type of thing?

= Example: why should simulation and formal verification
use different formats for safety assertions? Why use
different formats for constraints?

© EDP workshop April 2003 SY"[]PSYSD

Verification Synergy

° Bus functional model (BFM) / Testbench
synergies

Synthesizable: suitable for emulation
“Flip-able” l.e., equally suitable as drivers or monitors
Completeness possible.

Equally usable for simulation- / emulation-based
verification as with formal verification (e.g., model
checking)

Documentation / Formal description.

Support hierarchical (assume/guarantee) reasoning
Supports coverage analysis and simulation biasing.
Suitable for instruction/transaction level modeling?
Suitable for design synthesis optimization?

© EDP workshop April 2003 SY"[]PSYSD

What is Constraint-Based
Verification?

* Designers define constraints involving the inputs
of their designs.

°* They can immediately simulate their designs with
constraints ONLY and debug wave forms. No
testbench program is needed.

* Constraints and design mature incrementally.

° During integration constraints become monitors
automatically. (Flipping) This supports
assume/guarantee reasoning.

© EDP workshop April 2003 SY"[]PSYSD

Constraint / Assertion-Based
Methodology

Assertions (e.g., OVA, CBV) Verification

Use of Assertions

System-on-Chi

» Checking results
« Stimulus generation

Micro-logic
function !) Constraint assertions
‘—-—' High-Speed On-chip Bus I (
Z - — like SimGen)
Interf_ace 11
Compliance — | * Proving correctness

 Measuring coverage
Function Verification IP reuse

Reuse of Assertions Among
Simulation, Semi-Formal, and Formal Verification

© EDP workshop April 2003 SY"DPSYSO

Constraint Examples

“Inputs 0, 1 & 2 are 0-1-hot”
In0 +In1 +1In2 <=1;

“A transaction start can only be asserted
when the address state machine is in
the idle state.”

ts -> (addr_state = ADDR_IDLE));

Constraints are just Verilog formulas. It
works fine with OVA, TSP, Verilog or
almost any assertion language.

© EDP workshop April 2003 SY"[]PSYSD

Generation In0 + In1 + In2 <= 1;
ts -> (addr_state = "ADDR_IDLE));

onstraints
As Generator

ssertions and
Checkers -l

© EDP workshop April 2003 syn[lpsyse

Generation -> Assertion Flipping

In1 +In2 <=1;
ts -> (addr_state = "ADDR_IDLE));

System , \
Environment

Not Needed if
Assertions have been
Proven w. model checker!

—

ssertions and

Checkers ol

© EDP workshop April 2003 syn[lpsyse

Constraint-Based Verification

° Enables early, more extensive use of
assertion—based simulation at the unit
level by designers!

= -- by lowering the effort to animate a design
block and

= by incrementally refining the logic and
constraints

© EDP workshop April 2003 SY"[]PSYSD

Constraint-Based Verification

°* Design Manager:

“My proposal is for designers to test their logic
before releasing it to the verification team. This
will guarantee that we're not fighting
careless/silly errors when the blocks are
integrated in a system environment.

There are two reasons why | would like to follow the
CBV [SimGen] route: 1) all the support you and
your group have provided this past year and a
half, and 2) | believe it would be easier for
designers to use this tool than trying to learn the
[conventional directed-random simulation]
environment along with C++ and everything else.”

© EDP workshop April 2003 SY"[]PSYSD

Constraint-Based Verification

Low-effort, early animation of design blocks.
The cost of getting started is low.

Designers don't have to write an elaborate test-
bench to begin animating and debugging a block.

Because the development of environments
for designs is incremental, the cost of
developing constraint-based
environments is amortized over time.

© EDP workshop April 2003 SY"[]PSYSD

Constraint-Based Verification

Constraint-based verification integrates well
with other, existing simulation
approaches.

It can be integrated incrementally into a
verification flow.

Constraints can be developed to monitor
inputs In a directed or directed random
approach. As constraints mature, they
become simulation drivers (E.g.,
Automotive at Motorola).

SYNOPSYS’

© EDP workshop April 2003

Simulation & Formal methodology

Constraints can be used both in simulation
and formal verification (model checking).

Constraint-based verification reinforces
assertion-based verification (e.g., OVA —
because constraints ARE assertions.

Constraint-based simulation is unexpectedly
effective in finding corner cases. (See
slides below.)

© EDP workshop April 2003 SY"[]PSYSD

Constraint-Based Verification

Reuse of constraint verification IP at the
SoC level

1. Constraints can be used with model
checking as environments.

2. Constraint-based generators can be easily
converted into checkers during system
integration.

© EDP workshop April 2003 SY"[]PSYSD

Constraint-Based Verification

Constraint-based verification simulates
corner cases of designs more effectively
than other methods.

Constraint-based simulation finds bugs
earlier!

Another PPC Design Manager:

“The kind of bugs [CBV/SimGen user] has
found in my logic are difficult to find in
simulation. | do not believe we can guarantee
a high quality first tapeout without [t]his work.”

© EDP workshop April 2003 SY"[]PSYSD

Directed-Random vs. Constrained-
Random

INBOUND PROTOCOL

bugs found

Directed Random

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

bugs found Constraint-based

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

© EDP workshop April 2003 SY"[]PSYSD

Constrained-random vs. directed

random
OUTBOUND - LOGIC LAYER

Directed Random

bugs found

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00

Constraint-based

bugs found

10/99 11/99 12/99 01/00 02/00 03/00 04/00 05/00 06/00 07/00 08/00 09/00 10/00
© EDP workshop April 2003 SY"[]PSYSD

Summary

* Verification Synergy is important for cost-
effective verification, example:

* Constraint-Based Verification

= Provides early/easy animation of DUVs by
designers -- without checkers, without stimulus
driver programs,

= Provides robust stimulus to exercise corner
cases of design

= |nputs can be “weighted” to bias simulation
= Stimulus generation and checkers are dual
concepts.

© EDP workshop April 2003 SY"[]PSYSD

Summary (cont.)

* Constraint-Based Verification

= [ncrementally integrates into existing
simulation environment.

= Works with both simulation (VCS & Vera),
formal tools and OVA.

= Constraints can be used by designers directly
and incrementally — broader market.

= Constraint-based verification finds bugs faster
than other methods.

© EDP workshop April 2003 SY"[]PSYSD

End of Talk

Synopsys
© EDP workshop April 2003 J : -

Benefits

. Constraint-based verification can be put in
the hands of designers at the module,
block and unit levels of design. This
implies a much broader user-base for
formal and simulation tools.

. Verification checkers are left all over the
design to locate and isolate problems near
the bug site.

. Constraints formally document interfaces
to DUVs in a machine-readable way.

© EDP workshop April 2003 SY"[]PSYSD

Observation

. Complex temporal assertions (full CTL,
LTL) CANNOT be easily reused as
stimulus generators.

© EDP workshop April 2003 SY"[]PSYSD

Constraint Example

Request —

»Response
XYZ = Resp id[0:1]
= Resp type[0:1]

Req 1d[0;1]
Req type[0:2 | m—p-
Req prior[0:] [mep-

Assume: A request may be given only i its identitier s not equal to
the identifier of any active transaction.

© EDP workshop April 2003 SY"[]PSYSD

Constraint Example

module xyz;

function activate(id[0:1])[0:0] = request &

(req_id ==id) ;

function deactivate(id[0:1])[0:0] = response

& (resp_id ==id) ;
function active_next(id[0:1])[0:0] =
(deactivate(id) ? 1'b0
activate(id) ? 1'b1
active[id]) ;

© EDP workshop April 2003

SYNOPSYS’

Constraint-based Verification

var active[0:3] =
{active next(0),
active_next(1),
active_next(2),
active_next(3),

};

© EDP workshop April 2003 SY"[]PSYSD

Constraint-based Verification

°* User provides constraints as Boolean
expressions involving state and inputs.

* User provides biasing for each variable.

* SimGen generates input vectors to
simulator on each clock cycle by solving
constraints -- all together.

* SimGen is non-backtracking!

* SimGen is constant cost for each cycle.
The cost is linear data structures
representing constraints (e.g. BDDs).

© EDP workshop April 2003 SY"[]PSYSD

SimGen technical issues

°* Keeping BDD size low

* Automatic identification of special
constraints that can be handled separately

* Constraint fracturing
* Variable ordering
* Constraint prioritization

°* Run-time constraint solving (e.g.,
Shimizu/Dill)

© EDP workshop April 2003 SY"[]PSYSD

References

C. Pixley, K. Shultz, J. Yuan, “Integrated Formal and Informal
Design Verification of Commercial Integrated Circuits®, PDPTA,
pp- 1061-1067, June 28, 1999.

* J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz, “Modeling Design
Constraints and Biasing in Simulation Using BDDs”, ICCAD 1999

°* J. Kukula and T. Shiple, "Building Circuits from Relations™ CAV
2000

* K. Shimizu, D. L. Dill, and A. J. Hu. "Monitor-Based Formal
Specification of PCI", FMCAD 2000, Austin, Texas.

° K. Shimizu, D. L. Dill, C-T. Chou, "A Specification Methodology by
a Collection of Compact Properties as Applied to the Intel Itanium
Processor Bus Protocol”, CHARME 2001, Livingston, Scotland.

°* M. Kaufmann, A. Martin, C. Pixley, “Design Constraints in
Symbolic Model Checking”, CAV 1998: 477-487

© EDP workshop April 2003 SY"[]PSYSD

References

° J.Yuan, A. Aziz, K. Albin, C. Pixley, “Faster Boolean Constraint
Solving for Random Simulator-Vector Generation“, ICCAD, 2002.

* K.Shimizu, D. Dill, “Deriving a Simulation Input Generator and a
Coverage Metric from a Formal Specification”, DAC 2002.

°* J.Yuan, K. Albin, A.Aziz, C.Pixley, "Constraint Synthesis for
Environmental Modeling in Functional Verification*, (accepted)
DAC 2003.

© EDP workshop April 2003 SY"[]PSYSD

Common User Assertion Examples

°* One-hot buses

* Full and parallel case synthesis pragmas
° Array accesses

°* Bus contention

* Valid data not lost in stalled pipelines

° Low priority events eventually processed
°* Requests handled within spec’d window

* Packet Valid signal asserted correctly

© EDP workshop April 2003 SY"[]PSYSD

