

The Arrow of Time:
Following Timing Constraints in an RTL to GDSII Flow

Dwight Hill
Synopsys

The process of transforming a technology
independent design representation in VHDL or
Verilog into a process specific mask set is
commonly referred to as an "RTL to GDSII" flow.
In a classic flow this involves logic synthesis,
followed by placement, then routing, and then
buffering as distinct steps, with part or all of the
process repeated in a loop until design goals are
met. Current practice is to tie these functions
together within a single flow. Most of the
presentations and articles on this area concentrate
on the algorithmic issues in logic synthesis,
floorplanning, or placement. But in everyday
practice the management of timing constraints
forms a parallel flow, which can be almost as
demanding and consume as much designer effort
as the physical synthesis process.

This paper serves as an introduction to the issues
in supporting timing constraints through the
process. As background, we first review the
nature of timing constraints in current design
practices: where they originate, how they evolve,
and how they are represented. Secondly we
consider how they must be manipulated by the
tool to fit into a practical floorplan flow. Each of
these steps requires its own view of the design.
Finally, we summarize the characteristics of any
desirable flow.

What are Timing Constraints?

Timing information can be divided into two
categories, clock specifications and timing
exceptions. Verilog and other RTL languages
represent the logical behavior, or logical structure
of a design and are often used for timing
simulation, but give little information about
timing exceptions. (In fact, many physical
synthesis flows begin with structural Verilog,
which is completely devoid of timing
information.) In an ideal world only clock

specifications would be needed. There would be
only a few clocks, and the relationship among
them would be symmetric and clear. In practice,
designs with thirty or more distinct clocks (with
different periods) plus potentially hundreds of
derived clocks are common. Likewise an ideal
circuit would have few, or no timing exceptions.
In practice, designs tend to have a large fraction
of their paths (10% is not uncommon) marked as
false paths, and a similar but usually smaller
number marked as multicycle paths or other
exceptions.

Where do these timing exceptions originate? In
the best case the set of exceptions would be
obvious from the initial design specification. For
example many SOC devices have common busses
that act as interchange points among independent
subsystems. Unless properly handled, these can
appear as timing violations when a signal
launched by one clock is caught by another
unrelated clock. The architect generally knows
that this is not a supported operation, and that the
path is not exercised in the normal flow of
operation. But unless properly informed, the
timing engine will generate violation warnings
about them. This is the first, and better source of
timing exceptions: those generated proactively by
system architects using knowledge of the intended
system behavior.

A typical path between clock domains is
illustrated below:

CLK_A

CLK_A

CLK_B

CLK_B

This path could be disabled in one of several
ways, e.g.

 set_false_path –from [get_clocks
clk_a] –to [get_clocks clk_b]

or

 set_false_path –from
reg_a_left.out –to reg_b_right.in

Note that the design’s intention is probably the
inter-clock relationship. If the EDA tool translates
this into timing exceptions directly on the
registers, such information will be lost.

Unfortunately another source of exceptions is also
common. These originate from the process of
running timing analysis and finding violations,
with a post-hoc analysis used to justify that the
path in question is not valid. The problem with
the second approach is that you can never be sure
that you have a complete and correct set of timing
exceptions. Each timing analysis run requires a
circuit, an estimated or extracted set of loads, and
a set of constraints. Early in the design process,
the load estimates may have large errors in them,
making the design faster on some paths and
slower on others than the final tape out will
observe. Pessimistic loads are create lots of
“false positive” timing violations. Worse than
this, even if only a small percentage of loads are

optimistic but these happen to occur on true paths,
timing analysis will not catch any errors. The
result will be of very limited value. While this
may seem to be an unlikely event in a “random”
circuit, modern physical synthesis technology can
actually exasperate the problem. This is because
physical synthesis generally transfers delay from
tightly constrained paths to unconstrained paths.
Thus if a false path is incorrectly left active, it
will pull resources (both CPU during the EDA
tool run, and silicon area/power) from real paths.
And if a true path is left underconstrained it is
likely to be slowed down so much as to cause
circuit failure in the final chip.

Formats for Timing Constraints

Essentially all timing constraints start out has
human generated ASCI text files, usually in SDC
(Synopsys Design Constraint) or some similar
format. (SDC is a subset of the Tcl language
accepted by PrimeTime and other timing tools).
Since exception scripts are human generated they
tend to be relatively compact and contain clever
procedural or compacted notations for multiple
constraints. For example, the command

 set_false_path –from [get_pins
blocka/out*] –to [get_pins
blockb/in*]

would be a common example. More complex
example might be

 proc set_tc {fromblockname toblockname}
{
 foreach inp [get_pins –filter
“direction==in &&
 type==signal” –of
$from_blockname] {
 foreach outp [get_pins –filter
“direction==out” –of $to_blockname] {
 set_false_path –from $inp –
to $outp;
 }
 }
 }

now invoke the proc
set_tc blocka blockb

The above Tcl proc has the same effect as the
original statement (more or less) but is more
convenient, especially when multiple blocks must
be processed because the “proc” can be reused

and does not depend on the names of the pins
(only their direction).

This type of procedural format entered by the user
is generally the most compact representation.
However, in many flows it is not used directly.
Rather, there are several types of transformations
done on the constraints before tape out.

Perhaps the simplest is to eliminate the procedural
aspect by executing the script. In the example
above, the script is loaded and the Tcl proc
“set_tc” is run, resulting in dozens (or hundreds)
of individual false path statements executed.
These may be interpreted directly by the timing
engine, or stored for further processing.

The second level of processing is eliminating the
wild card (“*”) in object names. This is not
necessarily done in the Tcl interpreter: even tools
that are not based on Tcl may support this. The
expansion may be done internally, by associating
the constraint with many objects internally. After
this expansion, the constraints are generally
stored from one design object to/or through anther
specific design object. The memory required for
this representation is generally proportional to the
number of objects involved.

In either of the above cases the intent behind the
original text representation may be corrupted or
be completely lost. That is, the tool may represent
the constraints internally but not be able to
reconstruct them for the user, except as a flat
representation. Thus a few lines of SDC input can
be expanded considerably.

Hierarchy Mapping

In addition to the expansion due to the text to in-
memory processing, many flows involve moving
constraints across the design hierarchy. These are
typically at least two hierarchies the designer is
concerned with. The “original” logical hierarchy,
often corresponding to a behavioral RTL
representation, is typically very deep. At the other
end of the process, the “final” physical hierarchy
corresponding to mask data (or at least to
extracted routing) is usually very shallow. Thus
the hierarchy takes several forms and each may
have impact on the constraints. For example, if

constraints are originally expressed using pins
from hierarchical blocks but the design calls for
those blocks to be flattened the constraints need to
find a new “home” or they will be lost. Typically,
this calls for algorithms that will propagate the
constraints from a block pin down to a leaf cell
pin. This mapping is not necessarily one-to-one.
In some cases, a hierarchical block pin can
propagate down to hundreds of leaf pins.

Another type of hierarchy manipulation occurs
when individually designed blocks are combined
into one chip, especially during System on Chip
(SOC) design. The constraints associated with
each block are typically written for the context of
the block, often by a team in a remote location.
Once the block arrives at headquarters for
consolidation, it must fit onto the die. Less
obviously, the timing constraints associated with
the block must fit into the overall chip’s timing
scheme.

This process can be complex and time consuming,
especially if the blocks were developed
independently. One obvious problem is that each
block tends to use the names of objects (pins,
cells) locally, like “nand17/in2”. But when
processed at the chip level, they must be prefixed
with the block name, e.g. “blockC/nand17/in2”.
More subtle problems arise from clocks, which
are generally global in nature as far as the timing
verification is concerned. So clocks defined
within one scope may conflict with others. In both
cases the most widely used solution is to modify
the names of the objects with a block prefix. This
tends to increase file size and decrease
readability.

Time Budgeting

After the blocks are assembled and the constraints
are made legal there is the issue of making the
chip actually meet timing requirements. This can
be thought of as a series of operations that
identify problems (sometimes potential problems)
and assign resources to them. The problems are
usually slow paths. They may be due to poorly
structured logic within a block, long paths of
logic that run through two or more blocks, or
paths that involve very long cross chip signaling
without adequate buffering. The resources that

can be assigned may be obvious: larger drivers,
buffering, clock-tree style synthesis. Or they may
be “virtual” in that time may be apportioned away
from one block and given to another, in
preparation for a complete or partial physical
synthesis run. This process is known as time
budgeting.

The input to time budgeting is generally a circuit
early in the design process with preliminary
versions of the logic and estimations of the load
and delays among blocks, although time
budgeting can be also used later in the process
when the structure and delays are more precisely
known. Time budgeting starts with the timing it is
given and attempts to solve problems by
“spreading the pain” out across the blocks. Thus
if a path has a negative slack, the delays
associated with blocks that it traverses will be
reduced in the budgeting model, according to
heuristics that attempt to parallel the potential for
speed up in the final circuit. Similarly, paths with
positive slack have their elements slowed down.
Eventually the model reaches a point with zero
slack and the complex process of generating
timing constraints for each block can begin.

The figure below shows a typical design before
time budgeting:

In this case, you can see the distribution of slacks,
both positive and negative.

The figure below shows the same design after
budgeting:

In general, time budgeting will attempt to
eliminate all positive slack, but may chose to
leave some small negative slack on selected paths.
This is because over constraining physical
synthesis may result in somewhat excessive run
time, but under-constraining physical synthesis
will result in the chip failing to meet timing after
re-assembly.

Transforming Chip-level Constraints to Block-
Level Constraints

Modeling the context of each block involves
several steps and can be as complex as the overall
timing analysis of the chip. The timing context of
each block is a function of the surrounding logic,
which can involve the entire chip. The set of
clocks for each block includes not just those
directly by the block but the set of clocks used by
paths that enter, or even just pass through the
block. Input and output characteristics of the ports
of the block may reflect these other “virtual”
clocks and may have independent specifications
for rise time, fall time and other conditions. But
the biggest source of complexity in these
budgeted contexts is usually the timing
exceptions. Paths within the block that have
timing exceptions need to be processed, as well as
paths that enter, leave, and/or pass through the
block. Exceptions may be expressed as between

pins, ports, nets, clocks, or any combination
thereof.

CLK_A

CLK_B

P_1

P_2

In order to process this model correctly, the
clocks in the adjoining blocks must be
represented in the dashed block, even though they
have no physical embodiment in the block.
“Virtual” clocks are used to represent them. The
constraints in the dashed block might look like:

create_clock –name clka_virtual01
–period 7.0;
create_clock –name clkb_virtual01
–period 8.0;
set_input_delay –clock
clka_virtual01 3.25 [get_ports
p1]
set_output_delay –clock
clkb_virtual01 4.75 [get_ports
p2]

ECO

Many articles have discussed techniques for
engineering changes (ECO’s) of logic function,
but there is usually little consideration to the ECO
process for timing constraints. Yet timing
constraints are typically as complex, and certainly
as prone to error as RTL logic. Systems that
flatten and expand timing constraints make it very
difficult to make changes in the constraints after
the floorplan is well underway. What started out
as a 10K line procedural SDC file may be
expanded to more than 1 million lines of text.
When changes are needed in the intended chip
level timing behavior, it is usually awkward (at
best) to modify the expanded constraint file.

Other technologies

One distinct aspect of the time constraint
processing is that it is dependent almost entirely
on the complexity of the design, not on the
underlying technology. Thus while other EDA
problems, such as test generation might be
simplified when designing with FPGA’s (which
tend to be 100% testable without vectors), timing
analysis and constraint processing are not
simplified through their use. Timing constraints
are likely to continue to grow in complexity with
each generation of technology.

Summary: Effective Processing of Time
Constraints

The complexity and volume of timing constraints
in the flow of a chip can be overwhelming.
Current experience tends to show about one line
of timing constraints are generated per placeable
object. So for a SOC with 2 million objects (and
perhaps 200 RAM’s, or other blocks), one would
expect an overall timing exception file of about 2
million lines by the time of sign off.

How can this situation be improved? There is no
single simple answer but in general a key to
effective processing is to keep constraints in the
original format as long as possible, and avoid
expanding the constraints as much as possible.
Thus a system that starts by reading the
constraints and expanding them internally is not
likely to be as effective as one that can continue
to accept the constraints in the user format deep
into the flow. And similarly, a flow that is
required to flatten, expand or enlarge them will
have disadvantages over one that can output them
in a more compact format.

