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The process of transforming a technology 
independent design representation in VHDL or 
Verilog into a process specific mask set is 
commonly referred to as an "RTL to GDSII" flow. 
In a classic flow this involves logic synthesis, 
followed by placement, then routing, and then 
buffering as distinct steps, with part or all of the 
process repeated in a loop until design goals are 
met. Current practice is to tie these functions 
together within a single flow.  Most of the 
presentations and articles on this area concentrate 
on the algorithmic issues in logic synthesis, 
floorplanning, or placement. But in everyday 
practice the management of timing constraints 
forms a parallel flow, which can be almost as 
demanding and consume as much designer effort 
as the physical synthesis process.   
 
This paper serves as an introduction to the issues 
in supporting timing constraints through the 
process. As background, we first review the 
nature of timing constraints in current design 
practices: where they originate, how they evolve, 
and how they are represented. Secondly we 
consider how they must be manipulated by the 
tool to fit into a practical floorplan flow. Each of 
these steps requires its own view of the design. 
Finally, we summarize the characteristics of any 
desirable flow.  
 
What are Timing Constraints? 
 
Timing information can be divided into two 
categories, clock specifications and timing 
exceptions. Verilog and other RTL languages 
represent the logical behavior, or logical structure 
of a design and are often used for timing 
simulation, but give little information about 
timing exceptions. (In fact, many physical 
synthesis flows begin with structural Verilog, 
which is completely devoid of timing 
information.) In an ideal world only clock 

specifications would be needed. There would be 
only a few clocks, and the relationship among 
them would be symmetric and clear. In practice, 
designs with thirty or more distinct clocks (with 
different periods) plus potentially hundreds of 
derived clocks are common. Likewise an ideal 
circuit would have few, or no timing exceptions.  
In practice, designs tend to have a large fraction 
of their paths (10% is not uncommon) marked as 
false paths, and a similar but usually smaller 
number marked as multicycle paths or other 
exceptions. 
 
Where do these timing exceptions originate? In 
the best case the set of exceptions would be 
obvious from the initial design specification. For 
example many SOC devices have common busses 
that act as interchange points among independent 
subsystems. Unless properly handled, these can 
appear as timing violations when a signal 
launched by one clock is caught by another 
unrelated clock. The architect generally knows 
that this is not a supported operation, and that the 
path is not exercised in the normal flow of 
operation. But unless properly informed, the 
timing engine will generate violation warnings 
about them.  This is the first, and better source of 
timing exceptions: those generated proactively by 
system architects using knowledge of the intended 
system behavior.  



 
A typical path between clock domains is 
illustrated below: 
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This path could be disabled in one of several 
ways, e.g. 
 
 set_false_path –from [get_clocks 
clk_a] –to [get_clocks clk_b] 
 
or  
 
 set_false_path –from 
reg_a_left.out –to reg_b_right.in 
 
Note that the design’s intention is probably the 
inter-clock relationship. If the EDA tool translates 
this into timing exceptions directly on the 
registers, such information will be lost. 
 
Unfortunately another source of exceptions is also 
common. These originate from the process of 
running timing analysis and finding violations, 
with a post-hoc analysis used to justify that the 
path in question is not valid.  The problem with 
the second approach is that you can never be sure 
that you have a complete and correct set of timing 
exceptions. Each timing analysis run requires a 
circuit, an estimated or extracted set of loads, and 
a set of constraints. Early in the design process, 
the load estimates may have large errors in them, 
making the design faster on some paths and 
slower on others than the final tape out will 
observe.  Pessimistic loads are create lots of 
“false positive” timing violations. Worse than 
this, even if only a small percentage of loads are 

optimistic but these happen to occur on true paths, 
timing analysis will not catch any errors. The 
result will be of very limited value.  While this 
may seem to be an unlikely event in a “random” 
circuit, modern physical synthesis technology can 
actually exasperate the problem. This is because 
physical synthesis generally transfers delay from 
tightly constrained paths to unconstrained paths. 
Thus if a false path is incorrectly left active, it 
will pull resources (both CPU during the EDA 
tool run, and silicon area/power) from real paths. 
And if a true path is left underconstrained it is 
likely to be slowed down so much as to cause 
circuit failure in the final chip.         
 
Formats for Timing Constraints 
 
Essentially all timing constraints start out has 
human generated ASCI text files, usually in SDC 
(Synopsys Design Constraint) or some similar 
format. (SDC is a subset of the Tcl language 
accepted by PrimeTime and other timing tools).  
Since exception scripts are human generated they 
tend to be relatively compact and contain clever 
procedural or compacted notations for multiple 
constraints. For example, the command 
 
 set_false_path –from [get_pins 
blocka/out*] –to [get_pins 
blockb/in*]  
 
would be a common example. More complex 
example might be 
 
 proc set_tc {fromblockname  toblockname} 
{ 
     foreach inp [get_pins –filter 
“direction==in &&  
  type==signal” –of 
$from_blockname]  { 
 foreach outp [get_pins –filter 
“direction==out” –of $to_blockname]  { 
  set_false_path –from $inp –
to $outp; 
  } 
 } 
      } 
 
# now invoke the proc 
set_tc blocka blockb 
 

The above Tcl proc has the same effect as the 
original statement (more or less) but is more 
convenient, especially when multiple blocks must 
be processed because the “proc” can be reused 



and does not depend on the names of the pins 
(only their direction). 
 
This type of procedural format entered by the user 
is generally the most compact representation. 
However, in many flows it is not used directly. 
Rather, there are several types of transformations 
done on the constraints before tape out. 
 
Perhaps the simplest is to eliminate the procedural 
aspect by executing the script. In the example 
above, the script is loaded and the Tcl proc 
“set_tc” is run, resulting in dozens (or hundreds) 
of individual false path statements executed. 
These may be interpreted directly by the timing 
engine, or stored for further processing. 
 
The second level of processing is eliminating the 
wild card (“*”) in object names. This is not 
necessarily done in the Tcl interpreter: even tools 
that are not based on Tcl may support this. The 
expansion may be done internally, by associating 
the constraint with many objects internally. After 
this expansion, the constraints are generally 
stored from one design object to/or through anther 
specific design object. The memory required for 
this representation is generally proportional to the 
number of objects involved.  
 
In either of the above cases the intent behind the 
original text representation may be corrupted or 
be completely lost. That is, the tool may represent 
the constraints internally but not be able to 
reconstruct them for the user, except as a flat 
representation. Thus a few lines of SDC input can 
be expanded considerably. 
 
Hierarchy Mapping 
 
In addition to the expansion due to the text to in-
memory processing, many flows involve moving 
constraints across the design hierarchy. These are 
typically at least two hierarchies the designer is 
concerned with. The “original” logical hierarchy, 
often corresponding to a behavioral RTL 
representation, is typically very deep. At the other 
end of the process, the “final” physical hierarchy 
corresponding to mask data (or at least to 
extracted routing) is usually very shallow. Thus 
the hierarchy takes several forms and each may 
have impact on the constraints. For example, if 

constraints are originally expressed using pins 
from hierarchical blocks but the design calls for 
those blocks to be flattened the constraints need to 
find a new “home” or they will be lost. Typically, 
this calls for algorithms that will propagate the 
constraints from a block pin down to a leaf cell 
pin. This mapping is not necessarily one-to-one. 
In some cases, a hierarchical block pin can 
propagate down to hundreds of leaf pins. 
 
Another type of hierarchy manipulation occurs 
when individually designed blocks are combined 
into one chip, especially during System on Chip 
(SOC) design. The constraints associated with 
each block are typically written for the context of 
the block, often by a team in a remote location. 
Once the block arrives at headquarters for 
consolidation, it must fit onto the die. Less 
obviously, the timing constraints associated with 
the block must fit into the overall chip’s timing 
scheme. 
 
This process can be complex and time consuming, 
especially if the blocks were developed 
independently. One obvious problem is that each 
block tends to use the names of objects (pins, 
cells) locally, like “nand17/in2”. But when 
processed at the chip level, they must be prefixed 
with the block name, e.g. “blockC/nand17/in2”.  
More subtle problems arise from clocks, which 
are generally global in nature as far as the timing 
verification is concerned. So clocks defined 
within one scope may conflict with others. In both 
cases the most widely used solution is to modify 
the names of the objects with a block prefix. This 
tends to increase file size and decrease 
readability. 
 
Time Budgeting 
 
After the blocks are assembled and the constraints 
are made legal there is the issue of making the 
chip actually meet timing requirements. This can 
be thought of as a series of operations that 
identify problems (sometimes potential problems) 
and assign resources to them. The problems are 
usually slow paths. They may be due to poorly 
structured logic within a block, long paths of 
logic that run through two or more blocks, or 
paths that involve very long cross chip signaling 
without adequate buffering. The resources that 



can be assigned may be obvious: larger drivers, 
buffering, clock-tree style synthesis. Or they may 
be “virtual” in that time may be apportioned away 
from one block and given to another, in 
preparation for a complete or partial physical 
synthesis run. This process is known as time 
budgeting. 
 
The input to time budgeting is generally a circuit 
early in the design process with preliminary 
versions of the logic and estimations of the load 
and delays among blocks, although time 
budgeting can be also used later in the process 
when the structure and delays are more precisely 
known. Time budgeting starts with the timing it is 
given and attempts to solve problems by 
“spreading the pain” out across the blocks. Thus 
if a path has a negative slack, the delays 
associated with blocks that it traverses will be 
reduced in the budgeting model, according to 
heuristics that attempt to parallel the potential for 
speed up in the final circuit. Similarly, paths with 
positive slack have their elements slowed down. 
Eventually the model reaches a point with zero 
slack and the complex process of generating 
timing constraints for each block can begin. 
 
The figure below shows a typical design before 
time budgeting: 
 

 
 
In this case, you can see the distribution of slacks, 
both positive and negative. 

 
The figure below shows the same design after 
budgeting: 

 
 
In general, time budgeting will attempt to 
eliminate all positive slack, but may chose to 
leave some small negative slack on selected paths. 
This is because over constraining physical 
synthesis may result in somewhat excessive run 
time, but under-constraining physical synthesis 
will result in the chip failing to meet timing after 
re-assembly. 
 
Transforming Chip-level Constraints to Block-
Level Constraints 
 
Modeling the context of each block involves 
several steps and can be as complex as the overall 
timing analysis of the chip. The timing context of 
each block is a function of the surrounding logic, 
which can involve the entire chip. The set of 
clocks for each block includes not just those 
directly by the block but the set of clocks used by 
paths that enter, or even just pass through the 
block. Input and output characteristics of the ports 
of the block may reflect these other “virtual” 
clocks and may have independent specifications 
for rise time, fall time and other conditions. But 
the biggest source of complexity in these 
budgeted contexts is usually the timing 
exceptions. Paths within the block that have 
timing exceptions need to be processed, as well as 
paths that enter, leave, and/or pass through the 
block. Exceptions may be expressed as between 



pins, ports, nets, clocks, or any combination 
thereof. 
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In order to process this model correctly, the 
clocks in the adjoining blocks must be 
represented in the dashed block, even though they 
have no physical embodiment in the block. 
“Virtual” clocks are used to represent them. The 
constraints in the dashed block might look like: 
 
 
create_clock –name clka_virtual01 
–period 7.0; 
create_clock –name clkb_virtual01 
–period 8.0; 
set_input_delay –clock 
clka_virtual01 3.25 [get_ports 
p1] 
set_output_delay –clock 
clkb_virtual01 4.75 [get_ports 
p2] 
   
ECO 
 
Many articles have discussed techniques for 
engineering changes (ECO’s) of logic function, 
but there is usually little consideration to the ECO 
process for timing constraints. Yet timing 
constraints are typically as complex, and certainly 
as prone to error as RTL logic.  Systems that 
flatten and expand timing constraints make it very 
difficult to make changes in the constraints after 
the floorplan is well underway. What started out 
as a 10K line procedural SDC file may be 
expanded to more than 1 million lines of text. 
When changes are needed in the intended chip 
level  timing behavior, it is usually awkward (at 
best) to modify the expanded constraint file. 

 
Other technologies 
 
One distinct aspect of the time constraint 
processing is that it is dependent almost entirely 
on the complexity of the design, not on the 
underlying technology. Thus while other EDA 
problems, such as test generation might be 
simplified when designing with FPGA’s (which 
tend to be 100% testable without vectors), timing 
analysis and constraint processing are not 
simplified through their use.  Timing constraints 
are likely to continue to grow in complexity with 
each generation of technology. 
 
Summary: Effective Processing of Time 
Constraints 
 
The complexity and volume of timing constraints 
in the flow of a chip can be overwhelming. 
Current experience tends to show about one line 
of timing constraints are generated per placeable 
object. So for a SOC with 2 million objects (and 
perhaps 200 RAM’s, or other blocks), one would 
expect an overall timing exception file of about 2 
million lines by the time of sign off. 
 
How can this situation be improved? There is no 
single simple answer but in general a key to 
effective processing is to keep constraints in the 
original format as long as possible, and avoid 
expanding the constraints as much as possible. 
Thus a system that starts by reading the 
constraints and expanding them internally is not 
likely to be as effective as one that can continue 
to accept the constraints in the user format deep 
into the flow. And similarly, a flow that is 
required to flatten, expand or enlarge them will 
have disadvantages over one that can output them 
in a more compact format. 


