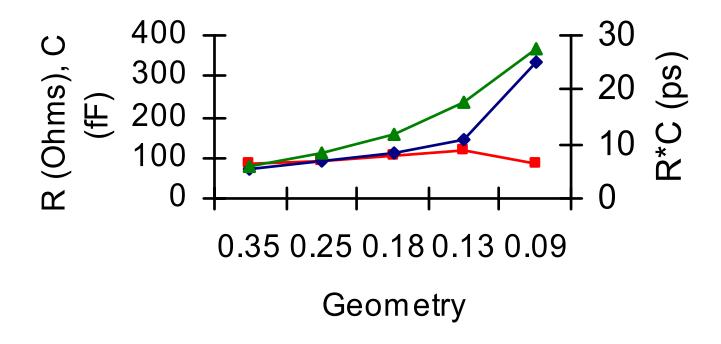
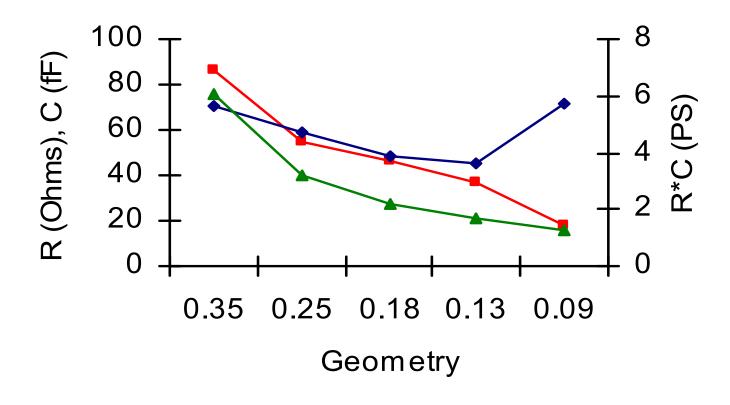

Telairity Semiconductor

Introduction

- Today most ASIC designs are very complex
 - ⋄ 500k to 20M gates
- Complexity has caused specialization
 - The "Tall Thin Engineer" is gone!
- Logic designer (RTL) is not involved with physical design
 - More like "C" programming
- Desire to make RTL design independent of physical design as much as possible
 - ♦ Tools will figure it out!
- Timing closure & SI the major ASIC problems
- What does history tell us.....

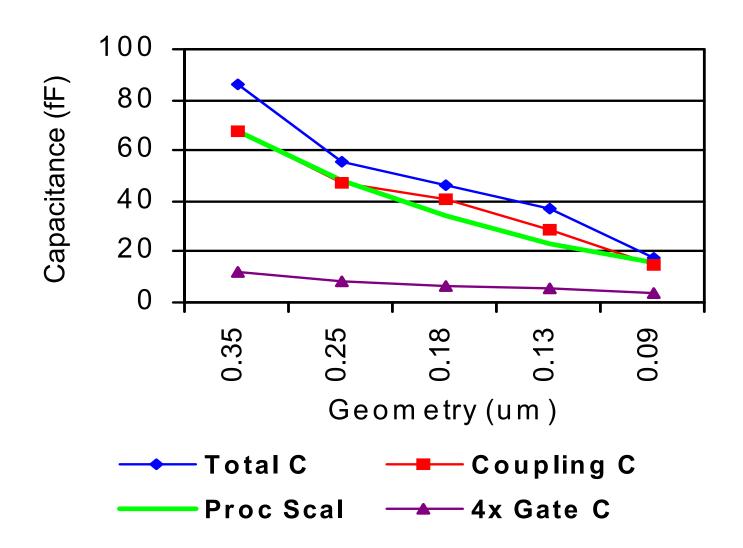

- 1960 to 1980 system history (very small designs)
 - Partitioning and backplane design were a critical part of the design cycle
 - Wiring delays were a major issue
 - Reduction of crosstalk and reflections were a major part of the design effort

- 1980 to 1990 CMOS chip history (small designs)
 - ♦ ASIC chips were primarily made with Gate Arrays
 - Chips were slow because
 - Conservative design, large transistors
 - Wiring not a big issue
 - RTL design was used since the 70's
 - Logic synthesis became popular
 - Productivity improved 2 to 3x
 - Standard Cells for ASSP designs
 - Standard Cells were faster than GA
 - Wiring not an issue because of ASIC comparison
 - Floor planning used


- 1990 to 2000 CMOS chip history (large)
 - Transistor density increased
 - Standard Cells becoming popular
 - Standard Cells still looked good compared to GA
 - Standard cells dominant in US & Europe
 - ♦ 0.35 & 0.25um wires not a big issue
 - Synthesis still produced good results
 - No floor planning

- 2000 to 2010 DSM forecast (very large)
 - ♦ Gate density continues to increase
 - ♦ 0.18um SI issues start showing up
 - ♦ 0.13um SI issues reported a serious problem
 - Pre-synthesis floor planning used widely for high speed designs
- Crosstalk and other SI issues are reported to be getting worse

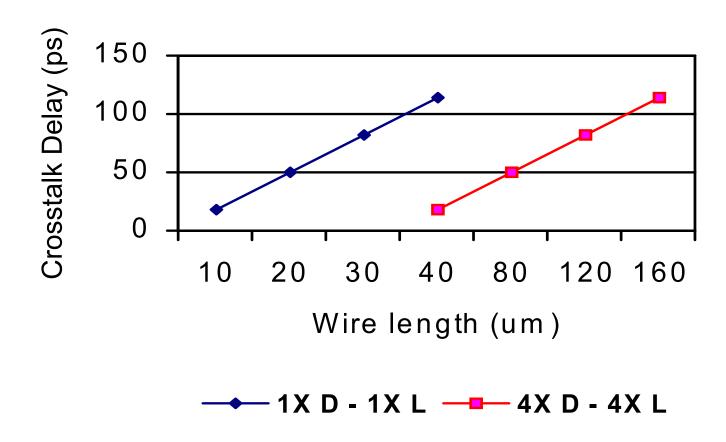
500um Fixed-Length Wires



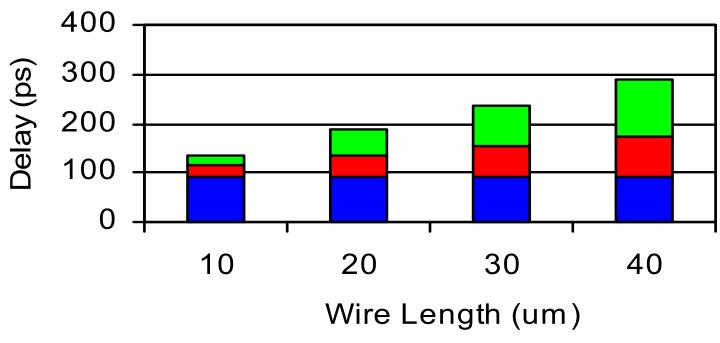
500um Wires Scaled

Total Capacitance → M3 Resistance
M3 RC Delay

Process Scaling



Typical Wireload Model, FO=4


Gates (K)	Capacitance (fF)	Wire Length (um)
10	5.2	26*
20	13.1	66
40	17.0	85
80	19.0	95
160	20.0	100

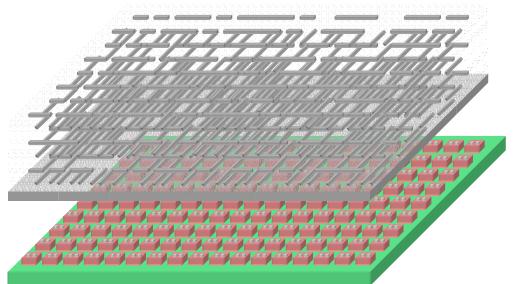
^{* 3000} gate block wires vary from 5um to 200um

Crosstalk Delay

Components of Delay

- Driver & Load Dly (ps)
 Wire Dly (ps)
- SI Dly (ps)

Note:

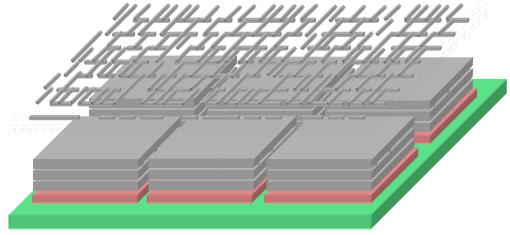

- 1. Intrinsic delay = 2 inverters
- 2. Wire delay is resistance of driver * (wire C + load C)
- 3. 1x inverters

Solution to Improve Performance

- Pre engineered hard IP building blocks where
 - Wiring, floor planning and proper gate loading is the focus
- IP Building blocks ("groups") of ~1000 gates
 - ♦ Optimized for 95%+ reuse

- High performance
 - ♦ Clock rate close to the theoretical maximum
 - ♦ 400MHz with 15 stages of logic in 0.18um

Wires Engineered



Telairity

- Groups for building blocks
- Pre-Engineered M1, M2, & M3
- No Routing thru M1,M2,M3
- Crosstalk in Group wires managed
- M4, M5 + for Global Routing
- Global Crosstalk eliminated

Typical wiring

- Gates for building blocks
- Local & global wires mixed on any of the metal layers

Group Categories

- Combinatorial Logic
 - ♦ Control logic PLA types of structures
 - ♦ Arithmetic/Logical Add, Subtract, Shift
- Sequential Logic
 - ♦ Finite state machines
 - ♦ Sequencers
 - Address generators
- Memories
 - ♦ High density SRAM for cache memories
 - ♦ Multi ported SRAM for Register files, queues, stacks
 - ♦ High density ROM for state machines
- "Trailers" Special small groups which attach to standard groups
 - Repeaters, Clock buffers, Multiplexers
 - Flip Flops for pipelining

Group Examples

Group Name	Average Wire Length (um)	Number of Gates
Buf_32x20_r2w1	111	2265
Iseq_8	42	2473
Ad2_32	25	873
Adsb3_80	29	3029
Perm_80	121	654
Bth_mux_32	39	2719

Note:

- 1. Average wire length variation 25um to 121 um
- 2. Perm_80 differs from wire load table by 5x!
- 3.Average ad2_32 for critical path 43um with range from 5um to 227um

Demonstration Chip

- Test chip fabricated
 - ♦ 0.18µm technology from UMC
 - Implemented dedicated DSP algorithms
 - SISD FIR filter
 - SIMD FIR filter
 - SIMD FFT
 - ♦ 450,000 gates
- Results
 - ♦ Performance ~400MHz
 - Worst case temp & voltage, typical process
 - Typically 2x faster
 - ♦ 23 Group types plus 34 Trailer types for entire chip

Wire Lengths for the FFT

	Average wire length (um)	Median wire length (um)
M2/M3	51	15
M4/M5	284	125

Metal Utilization for the FFT

Percent Routing Utilization
55.0
23.6
43.4
6.4
20.1

Conclusion

- Technology has been scaling
 - ♦ No new crosstalk problem
- Wiring is longer because
 - ♦ Designs are larger
 - No focus on wiring
- Longer wires cause the chips to run slower than expected
- New approach described
 - Hard IP building blocks optimized for speed
 - Performance 2 times that of a typical synthesized ASIC chip