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Abstract 
Building multi-vendor interoperable EDA design flows 
today is difficult if not impossible.  Historically, EDA 
companies have designed their systems to keep end users 
captive wherever possible.  This has the long-term effect 
of reducing competition and innovation in the EDA 
industry, to the detriment of the EDA user community, the 
EDA developers, and their companies.  It has kept the 
size of the overall EDA market smaller than it should be, 
and has led to the understanding that for each dollar 
spent on EDA tools and services, over three dollars is 
spent by EDA customers in integrating the tools from 
multiple vendors into a workable design flow [1].  If the 
EDA industry could do a better job at making this 
simpler, we could provide better products and services to 
our end customers that would lower their overall EDA 
bill, while making more money for our companies in the 
process. 

This paper describes the requirements of interoperable 
design flows from both the user perspective and the 
application-developer perspective.  It lists the dangers 
that can prevent a flow from working, even if all of the 
right foundational components are present.  Next, the 
OpenAccess design database work is introduced, and 
emphasis is placed on its use in fulfilling the 
interoperability requirements that have been presented.  
The future work for the OpenAccess group over the next 
year is described, and the conclusion that an open shared 
database like OpenAccess is a necessary piece of 
technology to realize the dream of a multi-vendor fully-
interoperable EDA design flow. 

1 User Requirements of Interoperable Flows 
The process of IC design turns an idea or concept into 
silicon.  Throughout the design and implementation there 
are many different representations for the design data.  It 
might start at an architectural or behavioral level and 
proceed through verification and synthesis.  Physical 
implementation can include custom design, automatic 
placement and routing, and many different analysis and 
verification tools, ranging from parasitic extraction and 
physical verification to timing analysis and circuit 
simulation.  Mask preparation can include OPC checks, 
PSM creation, and the data modifications done to GDSII-
level data to ready it for mask creation.  Ties to 
manufacturing and testing equipment carry along the 
design intent to allow more intelligent testing of the ICs 

during their construction.  The type of the design may be 
pure digital (D), analog (A), analog/digital with a small 
analog content (D/a), or mixed-signal with a digital focus 
(D/A) or an analog focus (A/D).  It is almost certain that 
multiple vendors’ tools are used to create a design flow, 
and it is possible that the end customer has some 
significant tools that are a critical part of the flow.  As we 
go from 180nm to 130nm to 90nm process nodes, the 
need for manufacturing-based knowledge at earlier stages 
of the design process grows. All of these dimensions 
combine to make it increasingly difficult to create the 
wide-ranging fully-integrated design flows needed for 
130nm and smaller design.  The following paragraphs 
present the challenges faced by the user in constructing 
interoperable flows, and details them in their approximate 
order of importance. 

The primary requirement from the user point of view for 
an interoperable flow is a consistent representation of the 
design data from the start of the design through the end.  
Regardless of how many tools, databases, or interchange 
formats are used in the flow, if data is lost during a step, 
and then needed at a later step, there will be problems 
(Figure 1  (A)). 

 

Figure 1 

It might be needed to be able to back-annotate derived 
information to an earlier form (for example, parasitic-
derived delays back to the original HDL netlist).  It also 
might be needed to incorporate an ECO from earlier in 
the design flow.  In these cases, the more information we 
keep about the design as it progresses through 
implementation, the better job we can do at providing an 
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incremental ECO that perturbs the physical 
implementation as little as possible. 

In addition to the design data, technology information 
must be carried along throughout the design process.  
This can range from fundamental process and geometric 
rules through complex electrical information used to 
guide analysis tools (for example, parasitic analysis). 
There are even more problems in this area than with the 
design data since many tools have different ways of 
looking at what is essentially the same technology data.  
If not accounted for, this can become painfully visible to 
the user, who must often enter data multiple times, in 
multiple formats, and is given the responsibility to 
manage this complexity with little or no assistance 
(Figure 1 (B)).  Add to this the fact that as the data is 
transformed during the design and implementation 
process, the required technology information is also 
transformed in terms of complexity (accuracy) and form.  
Taken together, these issues highlight the need for 
consistent interpretation and use of technology 
information throughout a flow. 

Related to the technology information but stored along 
with the design data are the constraints and assertions that 
capture the external requirements for the design.  As the 
design progresses these are translated down to lower-
level blocks within the design and abstracted to have 
meaning for specific tools and at specific stages within 
the flow.  For example, an original timing constraint 
could become a signal-integrity constraint between two 
adjacent signals that would ultimately become a 
separation constraint between the routing that implements 
the two signals.  In most systems today the linkage 
between the levels of abstraction is lost, leaving the 
management of constraints and assertions up to the end 
user.  Also, inconsistent (or even non-existent) 
transformation of the constraints can result in them being 
ignored or misinterpreted by tools within the flow.  This 
can lead to users being required to enter constraint 
information manually in multiple forms at different 
stages within the flow (Figure 1 (C)). 

Having a set of tools that have a consistent set of 
capabilities and capacity has a great effect on the ability 
to create an interoperable flow.  For example, if every 
tool except one in a flow can deal with blocks having a 
rectilinear boundary, it can make it difficult or impossible 
to construct a working flow for designs using rectilinear 
blocks.  Also, if one of the tools in the flow is much less 
efficient in its use of memory than the others, its reduced 
capacity will make it difficult or impossible to build a 
flow that will work for practical sizes of design.  It can be 
necessary to resort to 64-bit machines with large amounts 
of physical memory, and the resulting increase in 
hardware costs can make the entire flow less feasible 
economically. 

Stability is of paramount importance when building a 
design flow.  When building a multi-vendor flow in 
today’s environment, the use of interchange formats and 
proprietary databases is necessary.  Unfortunately, most 
vendors’ interchange format readers and writers are 
probably the least stable parts of their systems, both from 
the standpoint of code reliability and performance as well 
as in inconsistent mapping between the interchange 
format and the internal system.  Since many of these 
interchange formats either treat associated technology 
information in an ad hoc way or through separate side 
files, the robustness of transforming technology data 
through multi-vendor flows is even lower than that of 
design data. 

A requirement that is somewhat less tangible involves the 
increasing use of scripting and extension languages in 
EDA tools.  Tcl/tk seems to be the most popular such 
language, although Perl, Python, and many proprietary 
languages are also used.  Even when a single language is 
used throughout the tools found in a given flow, a multi-
vendor flow is likely to have different embedded 
command structures and forms in each tool.  This results 
in scripts that are difficult to maintain.  Since scripts 
often carry part of the design or constraint data during 
implementation, building a robust flow may require 
translation of scripts in the flow (Figure 1 (D)).  This 
almost certainly is left as an exercise for the end user or 
(if they’re lucky), their EDA department. 

Complicating this already complex situation even further 
is the need to continually evolve to meet changing 
technology requirements.  Most EDA users set up their 
flows for a given process node, and 10 years ago, this 
would suffice for 2 years or even longer.  Today, we’re 
seeing new process nodes every 12-18 months, and 
changes within the context of the same node point may 
require modification of a flow, and are coming at 6-
month intervals. 

One way of dealing with the technology-driven change, 
and a general capability that is needed to help make use 
of legacy tools, is a consistent extension mechanism.  If a 
tool within the flow doesn’t have the ability to contain 
some aspect of design, technology, or constraint 
information that is needed in a downstream tool, an 
extension mechanism can be used to store the data for 
later use.  Similarly, if technology advances impose new 
requirements that are not yet generally available, the 
extension mechanisms can be used to store the new data 
and carry it throughout the flow to the few tools that need 
and use it.  One problem that can occur in either of these 
cases is that if the stored extensions are related to the 
design data, they can become inconsistent as the design 
data is changed.  This can be difficult to track or even 
detect, especially if the tool doing the design data 



changes is the one that has not even a conceptual 
knowledge of the extension. 

A last point worth mentioning is a consistent look and 
feel in the tools within the flow.  If simple user-interface 
items such as selection, key binding, menu picks, dialog 
interactions, etc. are very different from tool to tool 
within a flow, this will reduce the overall efficiency and 
hence productivity within the flow.  Fortunately, with the 
ubiquitous position that enterprise PC software occupies 
in most companies today, more and more EDA tools 
operating paradigms are modeled after the PC tools, and 
this provides an unintended but very welcome 
consistency. 

2 Application-developer Requirements 
After looking at requirements from a user perspective, it 
is useful to look at what the requirements would be from 
an application-developer’s point of view. We can look at 
data interoperability levels ranging from file or 
interchange format through a common in-memory model, 
and discuss which mechanism is appropriate in which 
circumstances.  In addition we can look at the control-
interface level for components within a part of an 
interoperable system.  Given an underlying framework 
that supports the interoperability required at the data 
level, we’ll discuss what is necessary at the algorithmic 
and application levels to insure interoperability. 

File-level interoperability is the simplest kind (Figure 2).  

 

Figure 2 

It has the benefit that it decouples the tools involved from 
each other and probably from the exact version of the 
interchange format used.  It provides a readable format 
(in most cases) that can be used for purposes of 
debugging and testing.  Using files presents many 
challenges and issues, however.  The time needed to 
parse a readable format is usually much greater than that 
required to read a specific database file.  The size of the 
readable files is usually much greater than the design data 
in a database format.  Interchange formats act as “lossy 
filters” when compared to design databases.  If a format 
doesn’t contain a particular type of information, then a 
“round trip” through that format will lose possibly critical 
information.  File-level interchange is most useful for 
applications that create a different form of output and are 
not responsible for round-trip fidelity of the data. 

Using a database, but with a different in-memory model, 
treats it almost as an interchange format, but without 
several of the problems (Figure 3).   

 

Figure 3 

It shares the file-format advantage of allowing the tools 
to remain uncoupled.  It does not directly provide a 
readable version of the data, but databases often provide a 
readable archiving or versioning format that can be used 
if need arises.  Databases mitigate almost all of the 
problems found in file-based formats.  They require little 
or no parsing, and are hence much faster to read.  
Applications only need be concerned with the relevant 
data and the database system manages the rest of the data.  
In this sense they aren’t “lossy” like the file-based 
formats.  Round-trip fidelity is achieved by updating the 
relevant information in the database system.  The 
problems unique to database use arise when significant 
mapping must be done between the database information 
model and the in-memory model used by the application.  
This can make opening and saving a design too slow, and 
can even cause problems in the fidelity of the data 
mapping in the worst case.  In addition, it is very difficult 
to share components among applications that use the 
same database but have different in-memory models.  If 
this is a requirement you’re much better off developing a 
common in-memory model. 
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Once you have a common in-memory model, you have 
the best of the worlds (Error! Reference source not 
found.).   

 

Figure 4 

If you take the additional step of making the system 
components incremental and based upon the core in-
memory model wherever possible, then you can collect 
an entire set of application components; technology and 
algorithmic engines that can be combined and reused in 
many different products.  This lends consistency to the 
different tool suites within a design flow; reduces 
development and maintenance costs over time; makes for 
a modular system that can remain vital by easily 
upgrading modules one at a time; and provides a rich 
base for more rapid development of new products and 
technologies. 

Some would think (with more than a bit of justification) 
that having a common in-memory model can slow 
progress.  It is true that any sweeping change must be 
well planned and deployed.  It is less true that additions 
must be well planned; they often benefit from a 
developmental deployment where an initial design is 
tested with actual products and refined before being more 
broadly deployed.  The need for rapid progress can be 
met through use of the extension mechanisms mentioned 
in the previous section.  This allows rapid prototyping, 
the ability to keep proprietary extensions private, and 
makes sure that the progress of the standard doesn’t limit 
the ability of the tools to keep up with changes in 
technology. 

Even though the common in-memory model provides the 
greatest gains, it is important to choose an integration 
method that is well matched to the task at hand.  We 
continue to dismiss file-based formats for the problems 

previously mentioned.  However, using a database as an 
exchange format (see Figure 3) is appropriate if: 

• The subsystem isn’t incremental. 

• The I/O time as a fraction of the total run time is 
small. 

• The components within the subsystem are built 
on a different in-memory model and switching 
would be expensive, or would cause a 
degradation in performance. 

It is possible to build a highly productive design flow that 
uses tools plugged into a common database as a 
backplane that interfaces each tool in the flow in the most 
appropriate manner (Figure 5).  When done in a careful 
and elegant way, the integration seems completely 
seamless. 
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One advantage the common in-memory model gives over 
the use of the database as an interchange format is the 
ability to reuse system components.  The biggest impact 
this makes on the overall design flow is the level of 
consistency and convergence it brings.  Timing analysis 
gives the same answers right after synthesis (modulo a 
parasitic effect or two) as it does after physical 
implementation and extraction, even if the analysis is 
done in different tools.  An additional capability not yet 
mentioned that makes it easier to share components is a 
set of common control interfaces for the components.  If 
you standardize on the way a timing engine works it’s 
easier to reuse it and easier to replace it when necessary. 

3 Dangers affecting Interoperability 
What factors can affect interoperability?  Well, an 
incomplete database specification can keep different tools 
from interpreting the data correctly and consistently.  It is 
possible that API implementations might not have 
enough error checking to detect cases of inconsistent 
interpretation.  Dependence upon idiosyncratic behavior 
of the database system can cause some applications to fail 
when they are combined on a single database reference 
implementation, or the same application code may run 

Figure 5 

Design 
Data

Tool 1 Tool 2 Tool 3

Common In-Memory Model
C1 C3C1 C2 C3 C4



well on one database implementation and fail to run on 
another.  Overuse of localized extensions can lead to data 
that is no longer interoperable.  This is especially true if 
any of the core data is being replaced.  If the database 
system contains rapidly-changing APIs and/or semantics 
of the underlying data model, it can be difficult to 
maintain a functioning flow, especially in a multi-vendor 
environment.  You would need to synchronize the 
multiple vendors’ use of the design database, and this 
might be impossible if the development cycles of the 
groups contributing to the flow are widely different. 

Lastly, it is important to recognize that an interoperable 
framework enables the construction of interoperable 
flows, but doesn’t guarantee the end result.  It is still easy 
to build flows that require re-entry of constraint and 
technology information, have inconsistent interpretation 
of design data semantics, use incompatible extensions 
that should be shared, and so forth.  Application groups 
have to work very hard to create interoperable design 
flows. 

4 The OpenAccess Design Database 
Given the importance of a common design database in 
the EDA industry, the OpenAccess Coalition has been 
formed [2] to develop, deploy, and support an open-
sourced EDA design database with shared control.  The 
data model presented in the OA DB provides a unified 
model that currently extends from structural RTL through 
GDSII-level mask data.  It provides a rich enough 
capability to support digital, analog, and mixed-signal 
design data.  It provides technology data that can express 
foundry process design rules through 130nm, contains the 
definitions of the layers and purposes used in the design, 
definitions of VIAs and routing rules, definitions of 
operating points used for analysis, and so on. 

The details of the data model and the OA DB 
implementation have been described previously [3].  This 
paper will concentrate on considerations of how the 
OpenAccess design database promotes interoperability 
and fulfils the requirements already presented. 

5 Facilitating Interoperability with OpenAccess 
OpenAccess has several fundamental features that make 
it easy for applications to write interoperable code.  The 
OA extension capabilities allow applications to attach 
their own data structures to the database data structures, 
enabling the construction of incremental algorithms that 
communicate through the database.  These same 
extensions in their persistent form allow applications to 
rapidly prototype new constructs, and to accelerate the 
pace of evolution of the system.  Using extensions that 
may even be proprietary (we are each in business, after 
all), provides a legal way to divert from the standard 
while maintaining full compatibility and interoperability 
with other applications for the core of the standard 
database.  Basing applications more directly on the OA 

in-memory model leads toward consistent tool capacity.  
Applications must actively drive towards consistent use 
of the db capabilities to insure workable tool flows.  The 
stability and guaranteed migration of both the OA APIs 
and the design data created by OA insure that 
investments in application development are preserved 
over time.  This also helps product developers assemble 
flows that use application components that might not all 
be using the same level of OA db APIs (Error! 
Reference source not found.).  

 

Figure 6 

Lastly, extension language hooks for parameterized cells, 
user-extension management, and extension-language 
bindings are available and being used to foster 
interoperability through the availability of a common 
system language. 

Non-persistent OA extensions can be used by 
applications to tie their application data structures to the 
corresponding database objects.  Doing this gives a very 
high level of performance (but to be honest can never be 
as fast as a custom-built implementation created for the 
specific application).  It also reduces the amount of 
memory required, as it isn’t necessary to duplicate 
storage of data that is already in the database.  The 
biggest advantage comes when the OA callbacks are used 
to manage application data structure changes in reaction 
to a database change.  In this manner, multiple 
subsystems within a single process can interact and 
coexist entirely through interactions with the database.  
They never need to be directly cognizant of the other 
subsystem’s presence. 

OA extensions can be used in either a persistent or non-
persistent fashion for prototyping.  The OpenAccess 
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community is comprised of EDA professionals with vast 
areas of knowledge and expertise.  Each of us is 
interested in different advances that could be made with 
OA.  The extension mechanisms provide a means for 
prototyping new features.  They are almost identical in 
speed and memory performance to “native” features.  
This means that meaningful prototype information can be 
generated to not only demonstrate the functionality of a 
proposed feature, but also its expected memory usage and 
speed.  This is a very powerful capability that should both 
accelerate the rate of progress within the OA community 
as well as providing the “escape valve” needed by most 
developers to make up for the direct control they trade 
away when choosing to use OpenAccess. 

OA extensions can be used to provide a “legal” way of 
keeping some information proprietary.  In the past, this 
desire to have advanced features and information in an 
EDA database has led almost every EDA company to 
design their own design database.  As end users and their 
integration groups try to assemble working flows from a 
collection of different data models, databases, and 
interchange formats, this can become almost impossible.  
When using OpenAccess extensions, the core database is 
unchanged and is still fully interoperable with tools from 
any manufacturer.  Only the extensions are not visible.  
This lets the OA user concentrate on building db models 
only for their extensions and lets them be as efficient as 
possible. 

Building interoperable design flows using OpenAccess 
requires that applications do several things during their 
implementation.  They must first agree to base their in-
memory model using OA at its core.  By avoiding 
duplication where possible and appropriate, we can keep 
a higher capacity for the applications, improve the 
performance by not requiring input and output phases for 
an application, and make sure that multiple subsystems 
cooperating in the same process don’t have data 
synchronization troubles.  The second thing applications 
can do is to be designed to work in an incremental way.  
In this way, small changes made by one subsystem won’t 
require a large change or reanalysis by a cooperating 
subsystem.  A final recommendation for applications is to 
use the database in a “legal” and consistent way.  
Sometimes (especially legacy) applications have a 
different model for some construct than is found in OA.  
Many application developers aren’t sure where to put a 
piece of information, and decide to put it in whatever 
field appears “close” to what they need.  In this case, 
“close” won’t cut it, since the semantic meaning must be 
uniform throughout a flow or it won’t work.  The 
application should take the time to fully understand the 
usage of the system, and use the legal extension 
mechanisms to take care of anything that is necessary but 
that doesn’t fit within the OA model. 

OpenAccess guarantees wherever practical that the APIs 
provided will be upwards compatible from one release to 
the next.  This means that while we are adding new 
functionality on an ongoing and rapid basis, we do not 
change existing APIs without a good reason.  Required 
changes almost always follow changes in technology.  As 
an example, between version 2.0 and version 2.1 of 
OpenAccess, support for TrueType fonts has been added, 
requiring a change to the oaText APIs to support the new 
capability.  We try to keep these changes to a minimum, 
however. 

In OpenAccess we always guarantee to be able to bring 
the data forward from one database version to the next.  
Major versions are released about every six months (at 
the current time), and are defined by virtue of their direct 
data incompatibility.  Translators are provided to go from 
an older version to a newer one.  When making such a 
translation in the context of a design flow, it’s important 
to recognize that it is not possible to go back from a 
newer version to an older one.  This is because there is 
almost always more data added from OA release to 
release.  If we provided the means to go to an older 
version, it is likely that information would be lost.  Due 
to the “drop-in” capability of OA (and the ability to 
recompile for new major versions), it should almost 
always be possible to upgrade a design flow to the newest 
version used by the tools in the flow and still keep it 
working, even if there is a mixture of old and new tools. 

In OpenAccess, it is possible to tie in a scripting or 
extension language, such as Tcl/tk, Python, Perl, or Java.  
These languages (as well as the core OA language of 
C++) find use as implementation languages for 
parameterized (programmable) cells; as languages to 
guide and manage user extensions; and as command-level 
extension languages for a system built around OA.  
Parameterized cells (usually abbreviated to pcell) are a 
construct that has existed in the EDA industry for almost 
20 years now.  They are cells whose contents are not 
defined by a static netlist or layout but by a program that 
takes a parameter set that can be different for every 
instance of a given pcell.  VLSI Logic, Cadence Design 
Systems, Mentor Graphics, Avant! (now part of 
Synopsys) and many other companies have long had 
these types of cells.  The benefit within OpenAccess is 
that there is no requirement for a specific language so that 
the end users and application developers are free to add 
whatever language is best suited for or best liked by a 
particular company or group.  The implementation within 
OA allows library data to be distributed containing the 
parameterized cells along with an encapsulation of the 
language subsystem.  This data can be sent to another 
application that has no direct knowledge of the pcell 
language, and the whole system just works.  A similar 
capability is available for maintenance of user-extension 
data, although this is typically handled in C++ rather than 



an interpreted extension language, for performance 
reasons.  The same capability can be used as a command-
level extension/scripting language for a system built 
using OA.  In this case, a binding of the OA API into the 
extension language makes possible scripts that modify 
the database.   The language subsystem provides some of 
the most powerful and system-useful features within OA.  

6 Future Work 
The work of the OpenAccess ChangeTeam is 
documented in a 3-5-year Roadmap that is developed on 
a yearly basis [4].  The major items on the near-term 
roadmap are Embedded Module Hierarchy, Constraints 
and Assertions (Timing support), and expanding down 
into the Universal Data Model level.  

Embedded Module Hierarchy is a way to take a snapshot 
of a design hierarchy at a given point in time and be able 
to look at the data from three different perspectives; the 
Module domain, the Occurrence domain, and the Block 
domain.  The Module domain (think Verilog Modules) 
represents a logical hierarchy.  It is folded, and contains 
all of the levels of an original netlist.  The Occurrence 
domain is an unfolded version of the Module domain.  It 
is fully logical and contains no physical information 
(Figure 7). 

 

Figure 7 

As changes are made in the Module domain, they are 
reflected forward into the Occurrence domain.  When 
changes are made directly in the Occurrence domain, this 
causes uniquification of the Module occurrence and the 
changes are reflected backwards into the Module domain. 
The Block domain is folded, and most often contains the 
shape and connectivity information for a physical view.  
The three domains represent a single data hierarchy with 
three different ways of looking at the data.  The 
“Embedded” term comes from the fact that some of the 
Module nodes are also Block nodes.  The benefit of EMH 
is that it allows physically-oriented tools to look at 
multiple levels of logical hierarchy as though they had 
been flattened, without losing the information about the 
logical levels (including intermediate nets and terminals). 

Constraints and assertions are a wide-ranging topic, 
covering items that are timing, electrical, and/or physical 
in nature.  Work is proceeding to expand the capabilities 
of the OA Technology Database to represent constraints 
and assertions for timing and signal integrity.  We’re in 
the process of adding physical (foundry) rules for 90nm 
and 65nm process nodes.  We expect to ultimately add 
support for timing models (.lib and/or ALF support, OLA 
support).  The current state can support physical 
technology rules for 130nm.  The goal is to be able to 
support RTL-to-Silicon technology rules for 65nm.  This 
will be an ongoing effort with continuous improvement in 
each of the OA DB releases over the next several years. 

Another area of great interest to the OpenAccess 
Coalition is the work taking place in the semiconductor 
mask-making and equipment areas called the Universal 
Data Model, or UDM (Figure 8 [5]).   

 

Figure 8 [5] 

While OpenAccess currently supports IC design from 
RTL through GDSII levels, it stops short of supporting 
tasks from tape-out through wafer fabrication.  Support 
will be added for tape-out tasks such as Layer Filtering, 
Scaling and Shrinking, and Reticle Enhancement 
Technology.  Support for data preparation tasks such as 
Tonality and Mirroring, Sizing, Fracturing, and Job 
Composition will be added.  Support for mask-making 
tasks such as Writing, Inspection and Repair, and 
Metrology will be added.  Finally, support for wafer-
fabrication tasks like Lithography, Yield Analysis, and 
Test will be added [5].  This is an ongoing topic, and the 
advances in this area will be evolutionary and will take 
place in each of the OA DB releases over the next several 
years.  We will incorporate available standards wherever 
possible, such as the OASIS (or NSF) work, the SEMI 
P10 standard, and of course, the SEMI UDM work itself 
[6]. 
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7 Conclusions 
The requirements for interoperability take two main 
forms: framework capabilities and technology, and 
application-level resolve.  OpenAccess provides the 
interoperability at the framework levels, and sets the 
stage for construction of highly-interoperable flows that 
use a variety of models.  The models range from using 
the database as an interchange format, to using the 
database as an in-memory model.  A greater level of 
integration with OpenAccess allows greater 
modularization and reuse of application level components 
in products, but is not required or even appropriate for 
each application within a flow.  Lastly, even use of a 
common in-memory model is not a guarantee of 
interoperability.  Applications must take continual care to 
make sure they have the correct semantic interpretation of 
the data and that they use the data in a way that enables 
use of the greatest number of downstream tools.  If we 
make good use of infrastructure technology and keep 
clear application discipline, we should finally be able to 
build fully-interoperable multi-vendor flows. 
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