
Facilitating EDA Flow Interoperability with the
OpenAccess Design Database

Mark Bales

Cadence Design Systems, San Jose, CA, USA

Abstract
Building multi-vendor interoperable EDA design flows
today is difficult if not impossible. Historically, EDA
companies have designed their systems to keep end users
captive wherever possible. This has the long-term effect
of reducing competition and innovation in the EDA
industry, to the detriment of the EDA user community, the
EDA developers, and their companies. It has kept the
size of the overall EDA market smaller than it should be,
and has led to the understanding that for each dollar
spent on EDA tools and services, over three dollars is
spent by EDA customers in integrating the tools from
multiple vendors into a workable design flow [1]. If the
EDA industry could do a better job at making this
simpler, we could provide better products and services to
our end customers that would lower their overall EDA
bill, while making more money for our companies in the
process.

This paper describes the requirements of interoperable
design flows from both the user perspective and the
application-developer perspective. It lists the dangers
that can prevent a flow from working, even if all of the
right foundational components are present. Next, the
OpenAccess design database work is introduced, and
emphasis is placed on its use in fulfilling the
interoperability requirements that have been presented.
The future work for the OpenAccess group over the next
year is described, and the conclusion that an open shared
database like OpenAccess is a necessary piece of
technology to realize the dream of a multi-vendor fully-
interoperable EDA design flow.

1 User Requirements of Interoperable Flows
The process of IC design turns an idea or concept into
silicon. Throughout the design and implementation there
are many different representations for the design data. It
might start at an architectural or behavioral level and
proceed through verification and synthesis. Physical
implementation can include custom design, automatic
placement and routing, and many different analysis and
verification tools, ranging from parasitic extraction and
physical verification to timing analysis and circuit
simulation. Mask preparation can include OPC checks,
PSM creation, and the data modifications done to GDSII-
level data to ready it for mask creation. Ties to
manufacturing and testing equipment carry along the
design intent to allow more intelligent testing of the ICs

during their construction. The type of the design may be
pure digital (D), analog (A), analog/digital with a small
analog content (D/a), or mixed-signal with a digital focus
(D/A) or an analog focus (A/D). It is almost certain that
multiple vendors’ tools are used to create a design flow,
and it is possible that the end customer has some
significant tools that are a critical part of the flow. As we
go from 180nm to 130nm to 90nm process nodes, the
need for manufacturing-based knowledge at earlier stages
of the design process grows. All of these dimensions
combine to make it increasingly difficult to create the
wide-ranging fully-integrated design flows needed for
130nm and smaller design. The following paragraphs
present the challenges faced by the user in constructing
interoperable flows, and details them in their approximate
order of importance.

The primary requirement from the user point of view for
an interoperable flow is a consistent representation of the
design data from the start of the design through the end.
Regardless of how many tools, databases, or interchange
formats are used in the flow, if data is lost during a step,
and then needed at a later step, there will be problems
(Figure 1 (A)).

Figure 1

It might be needed to be able to back-annotate derived
information to an earlier form (for example, parasitic-
derived delays back to the original HDL netlist). It also
might be needed to incorporate an ECO from earlier in
the design flow. In these cases, the more information we
keep about the design as it progresses through
implementation, the better job we can do at providing an

X

X

X

Design Data

Tech Data

Scripts

X

X

?? (D)

(B)

(C)
90%

XDATA LOST! (A)

Tool 1 Tool 2 Tool 3

incremental ECO that perturbs the physical
implementation as little as possible.

In addition to the design data, technology information
must be carried along throughout the design process.
This can range from fundamental process and geometric
rules through complex electrical information used to
guide analysis tools (for example, parasitic analysis).
There are even more problems in this area than with the
design data since many tools have different ways of
looking at what is essentially the same technology data.
If not accounted for, this can become painfully visible to
the user, who must often enter data multiple times, in
multiple formats, and is given the responsibility to
manage this complexity with little or no assistance
(Figure 1 (B)). Add to this the fact that as the data is
transformed during the design and implementation
process, the required technology information is also
transformed in terms of complexity (accuracy) and form.
Taken together, these issues highlight the need for
consistent interpretation and use of technology
information throughout a flow.

Related to the technology information but stored along
with the design data are the constraints and assertions that
capture the external requirements for the design. As the
design progresses these are translated down to lower-
level blocks within the design and abstracted to have
meaning for specific tools and at specific stages within
the flow. For example, an original timing constraint
could become a signal-integrity constraint between two
adjacent signals that would ultimately become a
separation constraint between the routing that implements
the two signals. In most systems today the linkage
between the levels of abstraction is lost, leaving the
management of constraints and assertions up to the end
user. Also, inconsistent (or even non-existent)
transformation of the constraints can result in them being
ignored or misinterpreted by tools within the flow. This
can lead to users being required to enter constraint
information manually in multiple forms at different
stages within the flow (Figure 1 (C)).

Having a set of tools that have a consistent set of
capabilities and capacity has a great effect on the ability
to create an interoperable flow. For example, if every
tool except one in a flow can deal with blocks having a
rectilinear boundary, it can make it difficult or impossible
to construct a working flow for designs using rectilinear
blocks. Also, if one of the tools in the flow is much less
efficient in its use of memory than the others, its reduced
capacity will make it difficult or impossible to build a
flow that will work for practical sizes of design. It can be
necessary to resort to 64-bit machines with large amounts
of physical memory, and the resulting increase in
hardware costs can make the entire flow less feasible
economically.

Stability is of paramount importance when building a
design flow. When building a multi-vendor flow in
today’s environment, the use of interchange formats and
proprietary databases is necessary. Unfortunately, most
vendors’ interchange format readers and writers are
probably the least stable parts of their systems, both from
the standpoint of code reliability and performance as well
as in inconsistent mapping between the interchange
format and the internal system. Since many of these
interchange formats either treat associated technology
information in an ad hoc way or through separate side
files, the robustness of transforming technology data
through multi-vendor flows is even lower than that of
design data.

A requirement that is somewhat less tangible involves the
increasing use of scripting and extension languages in
EDA tools. Tcl/tk seems to be the most popular such
language, although Perl, Python, and many proprietary
languages are also used. Even when a single language is
used throughout the tools found in a given flow, a multi-
vendor flow is likely to have different embedded
command structures and forms in each tool. This results
in scripts that are difficult to maintain. Since scripts
often carry part of the design or constraint data during
implementation, building a robust flow may require
translation of scripts in the flow (Figure 1 (D)). This
almost certainly is left as an exercise for the end user or
(if they’re lucky), their EDA department.

Complicating this already complex situation even further
is the need to continually evolve to meet changing
technology requirements. Most EDA users set up their
flows for a given process node, and 10 years ago, this
would suffice for 2 years or even longer. Today, we’re
seeing new process nodes every 12-18 months, and
changes within the context of the same node point may
require modification of a flow, and are coming at 6-
month intervals.

One way of dealing with the technology-driven change,
and a general capability that is needed to help make use
of legacy tools, is a consistent extension mechanism. If a
tool within the flow doesn’t have the ability to contain
some aspect of design, technology, or constraint
information that is needed in a downstream tool, an
extension mechanism can be used to store the data for
later use. Similarly, if technology advances impose new
requirements that are not yet generally available, the
extension mechanisms can be used to store the new data
and carry it throughout the flow to the few tools that need
and use it. One problem that can occur in either of these
cases is that if the stored extensions are related to the
design data, they can become inconsistent as the design
data is changed. This can be difficult to track or even
detect, especially if the tool doing the design data

changes is the one that has not even a conceptual
knowledge of the extension.

A last point worth mentioning is a consistent look and
feel in the tools within the flow. If simple user-interface
items such as selection, key binding, menu picks, dialog
interactions, etc. are very different from tool to tool
within a flow, this will reduce the overall efficiency and
hence productivity within the flow. Fortunately, with the
ubiquitous position that enterprise PC software occupies
in most companies today, more and more EDA tools
operating paradigms are modeled after the PC tools, and
this provides an unintended but very welcome
consistency.

2 Application-developer Requirements
After looking at requirements from a user perspective, it
is useful to look at what the requirements would be from
an application-developer’s point of view. We can look at
data interoperability levels ranging from file or
interchange format through a common in-memory model,
and discuss which mechanism is appropriate in which
circumstances. In addition we can look at the control-
interface level for components within a part of an
interoperable system. Given an underlying framework
that supports the interoperability required at the data
level, we’ll discuss what is necessary at the algorithmic
and application levels to insure interoperability.

File-level interoperability is the simplest kind (Figure 2).

Figure 2

It has the benefit that it decouples the tools involved from
each other and probably from the exact version of the
interchange format used. It provides a readable format
(in most cases) that can be used for purposes of
debugging and testing. Using files presents many
challenges and issues, however. The time needed to
parse a readable format is usually much greater than that
required to read a specific database file. The size of the
readable files is usually much greater than the design data
in a database format. Interchange formats act as “lossy
filters” when compared to design databases. If a format
doesn’t contain a particular type of information, then a
“round trip” through that format will lose possibly critical
information. File-level interchange is most useful for
applications that create a different form of output and are
not responsible for round-trip fidelity of the data.

Using a database, but with a different in-memory model,
treats it almost as an interchange format, but without
several of the problems (Figure 3).

Figure 3

It shares the file-format advantage of allowing the tools
to remain uncoupled. It does not directly provide a
readable version of the data, but databases often provide a
readable archiving or versioning format that can be used
if need arises. Databases mitigate almost all of the
problems found in file-based formats. They require little
or no parsing, and are hence much faster to read.
Applications only need be concerned with the relevant
data and the database system manages the rest of the data.
In this sense they aren’t “lossy” like the file-based
formats. Round-trip fidelity is achieved by updating the
relevant information in the database system. The
problems unique to database use arise when significant
mapping must be done between the database information
model and the in-memory model used by the application.
This can make opening and saving a design too slow, and
can even cause problems in the fidelity of the data
mapping in the worst case. In addition, it is very difficult
to share components among applications that use the
same database but have different in-memory models. If
this is a requirement you’re much better off developing a
common in-memory model.

Design
Data

Tool 1 Tool 2 Tool 3

IMM 1 IMM 2 IMM 3
I/O I/O I/O

X X

Tool 1 Tool 2 Tool 3

IMM 1 IMM 2 IMM 3

Once you have a common in-memory model, you have
the best of the worlds (Error! Reference source not
found.).

Figure 4

If you take the additional step of making the system
components incremental and based upon the core in-
memory model wherever possible, then you can collect
an entire set of application components; technology and
algorithmic engines that can be combined and reused in
many different products. This lends consistency to the
different tool suites within a design flow; reduces
development and maintenance costs over time; makes for
a modular system that can remain vital by easily
upgrading modules one at a time; and provides a rich
base for more rapid development of new products and
technologies.

Some would think (with more than a bit of justification)
that having a common in-memory model can slow
progress. It is true that any sweeping change must be
well planned and deployed. It is less true that additions
must be well planned; they often benefit from a
developmental deployment where an initial design is
tested with actual products and refined before being more
broadly deployed. The need for rapid progress can be
met through use of the extension mechanisms mentioned
in the previous section. This allows rapid prototyping,
the ability to keep proprietary extensions private, and
makes sure that the progress of the standard doesn’t limit
the ability of the tools to keep up with changes in
technology.

Even though the common in-memory model provides the
greatest gains, it is important to choose an integration
method that is well matched to the task at hand. We
continue to dismiss file-based formats for the problems

previously mentioned. However, using a database as an
exchange format (see Figure 3) is appropriate if:

• The subsystem isn’t incremental.

• The I/O time as a fraction of the total run time is
small.

• The components within the subsystem are built
on a different in-memory model and switching
would be expensive, or would cause a
degradation in performance.

It is possible to build a highly productive design flow that
uses tools plugged into a common database as a
backplane that interfaces each tool in the flow in the most
appropriate manner (Figure 5). When done in a careful
and elegant way, the integration seems completely
seamless.

Design
Data

Tool 1 Tool 2 Tool 3

Common
IMM

T2 IMM Common
IMMI/O

One advantage the common in-memory model gives over
the use of the database as an interchange format is the
ability to reuse system components. The biggest impact
this makes on the overall design flow is the level of
consistency and convergence it brings. Timing analysis
gives the same answers right after synthesis (modulo a
parasitic effect or two) as it does after physical
implementation and extraction, even if the analysis is
done in different tools. An additional capability not yet
mentioned that makes it easier to share components is a
set of common control interfaces for the components. If
you standardize on the way a timing engine works it’s
easier to reuse it and easier to replace it when necessary.

3 Dangers affecting Interoperability
What factors can affect interoperability? Well, an
incomplete database specification can keep different tools
from interpreting the data correctly and consistently. It is
possible that API implementations might not have
enough error checking to detect cases of inconsistent
interpretation. Dependence upon idiosyncratic behavior
of the database system can cause some applications to fail
when they are combined on a single database reference
implementation, or the same application code may run

Figure 5

Design
Data

Tool 1 Tool 2 Tool 3

Common In-Memory Model
C1 C3C1 C2 C3 C4

well on one database implementation and fail to run on
another. Overuse of localized extensions can lead to data
that is no longer interoperable. This is especially true if
any of the core data is being replaced. If the database
system contains rapidly-changing APIs and/or semantics
of the underlying data model, it can be difficult to
maintain a functioning flow, especially in a multi-vendor
environment. You would need to synchronize the
multiple vendors’ use of the design database, and this
might be impossible if the development cycles of the
groups contributing to the flow are widely different.

Lastly, it is important to recognize that an interoperable
framework enables the construction of interoperable
flows, but doesn’t guarantee the end result. It is still easy
to build flows that require re-entry of constraint and
technology information, have inconsistent interpretation
of design data semantics, use incompatible extensions
that should be shared, and so forth. Application groups
have to work very hard to create interoperable design
flows.

4 The OpenAccess Design Database
Given the importance of a common design database in
the EDA industry, the OpenAccess Coalition has been
formed [2] to develop, deploy, and support an open-
sourced EDA design database with shared control. The
data model presented in the OA DB provides a unified
model that currently extends from structural RTL through
GDSII-level mask data. It provides a rich enough
capability to support digital, analog, and mixed-signal
design data. It provides technology data that can express
foundry process design rules through 130nm, contains the
definitions of the layers and purposes used in the design,
definitions of VIAs and routing rules, definitions of
operating points used for analysis, and so on.

The details of the data model and the OA DB
implementation have been described previously [3]. This
paper will concentrate on considerations of how the
OpenAccess design database promotes interoperability
and fulfils the requirements already presented.

5 Facilitating Interoperability with OpenAccess
OpenAccess has several fundamental features that make
it easy for applications to write interoperable code. The
OA extension capabilities allow applications to attach
their own data structures to the database data structures,
enabling the construction of incremental algorithms that
communicate through the database. These same
extensions in their persistent form allow applications to
rapidly prototype new constructs, and to accelerate the
pace of evolution of the system. Using extensions that
may even be proprietary (we are each in business, after
all), provides a legal way to divert from the standard
while maintaining full compatibility and interoperability
with other applications for the core of the standard
database. Basing applications more directly on the OA

in-memory model leads toward consistent tool capacity.
Applications must actively drive towards consistent use
of the db capabilities to insure workable tool flows. The
stability and guaranteed migration of both the OA APIs
and the design data created by OA insure that
investments in application development are preserved
over time. This also helps product developers assemble
flows that use application components that might not all
be using the same level of OA db APIs (Error!
Reference source not found.).

Figure 6

Lastly, extension language hooks for parameterized cells,
user-extension management, and extension-language
bindings are available and being used to foster
interoperability through the availability of a common
system language.

Non-persistent OA extensions can be used by
applications to tie their application data structures to the
corresponding database objects. Doing this gives a very
high level of performance (but to be honest can never be
as fast as a custom-built implementation created for the
specific application). It also reduces the amount of
memory required, as it isn’t necessary to duplicate
storage of data that is already in the database. The
biggest advantage comes when the OA callbacks are used
to manage application data structure changes in reaction
to a database change. In this manner, multiple
subsystems within a single process can interact and
coexist entirely through interactions with the database.
They never need to be directly cognizant of the other
subsystem’s presence.

OA extensions can be used in either a persistent or non-
persistent fashion for prototyping. The OpenAccess

Design
Data

Tool

C3 C4

OpenAccess DB
2.1 API 2.2 API

community is comprised of EDA professionals with vast
areas of knowledge and expertise. Each of us is
interested in different advances that could be made with
OA. The extension mechanisms provide a means for
prototyping new features. They are almost identical in
speed and memory performance to “native” features.
This means that meaningful prototype information can be
generated to not only demonstrate the functionality of a
proposed feature, but also its expected memory usage and
speed. This is a very powerful capability that should both
accelerate the rate of progress within the OA community
as well as providing the “escape valve” needed by most
developers to make up for the direct control they trade
away when choosing to use OpenAccess.

OA extensions can be used to provide a “legal” way of
keeping some information proprietary. In the past, this
desire to have advanced features and information in an
EDA database has led almost every EDA company to
design their own design database. As end users and their
integration groups try to assemble working flows from a
collection of different data models, databases, and
interchange formats, this can become almost impossible.
When using OpenAccess extensions, the core database is
unchanged and is still fully interoperable with tools from
any manufacturer. Only the extensions are not visible.
This lets the OA user concentrate on building db models
only for their extensions and lets them be as efficient as
possible.

Building interoperable design flows using OpenAccess
requires that applications do several things during their
implementation. They must first agree to base their in-
memory model using OA at its core. By avoiding
duplication where possible and appropriate, we can keep
a higher capacity for the applications, improve the
performance by not requiring input and output phases for
an application, and make sure that multiple subsystems
cooperating in the same process don’t have data
synchronization troubles. The second thing applications
can do is to be designed to work in an incremental way.
In this way, small changes made by one subsystem won’t
require a large change or reanalysis by a cooperating
subsystem. A final recommendation for applications is to
use the database in a “legal” and consistent way.
Sometimes (especially legacy) applications have a
different model for some construct than is found in OA.
Many application developers aren’t sure where to put a
piece of information, and decide to put it in whatever
field appears “close” to what they need. In this case,
“close” won’t cut it, since the semantic meaning must be
uniform throughout a flow or it won’t work. The
application should take the time to fully understand the
usage of the system, and use the legal extension
mechanisms to take care of anything that is necessary but
that doesn’t fit within the OA model.

OpenAccess guarantees wherever practical that the APIs
provided will be upwards compatible from one release to
the next. This means that while we are adding new
functionality on an ongoing and rapid basis, we do not
change existing APIs without a good reason. Required
changes almost always follow changes in technology. As
an example, between version 2.0 and version 2.1 of
OpenAccess, support for TrueType fonts has been added,
requiring a change to the oaText APIs to support the new
capability. We try to keep these changes to a minimum,
however.

In OpenAccess we always guarantee to be able to bring
the data forward from one database version to the next.
Major versions are released about every six months (at
the current time), and are defined by virtue of their direct
data incompatibility. Translators are provided to go from
an older version to a newer one. When making such a
translation in the context of a design flow, it’s important
to recognize that it is not possible to go back from a
newer version to an older one. This is because there is
almost always more data added from OA release to
release. If we provided the means to go to an older
version, it is likely that information would be lost. Due
to the “drop-in” capability of OA (and the ability to
recompile for new major versions), it should almost
always be possible to upgrade a design flow to the newest
version used by the tools in the flow and still keep it
working, even if there is a mixture of old and new tools.

In OpenAccess, it is possible to tie in a scripting or
extension language, such as Tcl/tk, Python, Perl, or Java.
These languages (as well as the core OA language of
C++) find use as implementation languages for
parameterized (programmable) cells; as languages to
guide and manage user extensions; and as command-level
extension languages for a system built around OA.
Parameterized cells (usually abbreviated to pcell) are a
construct that has existed in the EDA industry for almost
20 years now. They are cells whose contents are not
defined by a static netlist or layout but by a program that
takes a parameter set that can be different for every
instance of a given pcell. VLSI Logic, Cadence Design
Systems, Mentor Graphics, Avant! (now part of
Synopsys) and many other companies have long had
these types of cells. The benefit within OpenAccess is
that there is no requirement for a specific language so that
the end users and application developers are free to add
whatever language is best suited for or best liked by a
particular company or group. The implementation within
OA allows library data to be distributed containing the
parameterized cells along with an encapsulation of the
language subsystem. This data can be sent to another
application that has no direct knowledge of the pcell
language, and the whole system just works. A similar
capability is available for maintenance of user-extension
data, although this is typically handled in C++ rather than

an interpreted extension language, for performance
reasons. The same capability can be used as a command-
level extension/scripting language for a system built
using OA. In this case, a binding of the OA API into the
extension language makes possible scripts that modify
the database. The language subsystem provides some of
the most powerful and system-useful features within OA.

6 Future Work
The work of the OpenAccess ChangeTeam is
documented in a 3-5-year Roadmap that is developed on
a yearly basis [4]. The major items on the near-term
roadmap are Embedded Module Hierarchy, Constraints
and Assertions (Timing support), and expanding down
into the Universal Data Model level.

Embedded Module Hierarchy is a way to take a snapshot
of a design hierarchy at a given point in time and be able
to look at the data from three different perspectives; the
Module domain, the Occurrence domain, and the Block
domain. The Module domain (think Verilog Modules)
represents a logical hierarchy. It is folded, and contains
all of the levels of an original netlist. The Occurrence
domain is an unfolded version of the Module domain. It
is fully logical and contains no physical information
(Figure 7).

Figure 7

As changes are made in the Module domain, they are
reflected forward into the Occurrence domain. When
changes are made directly in the Occurrence domain, this
causes uniquification of the Module occurrence and the
changes are reflected backwards into the Module domain.
The Block domain is folded, and most often contains the
shape and connectivity information for a physical view.
The three domains represent a single data hierarchy with
three different ways of looking at the data. The
“Embedded” term comes from the fact that some of the
Module nodes are also Block nodes. The benefit of EMH
is that it allows physically-oriented tools to look at
multiple levels of logical hierarchy as though they had
been flattened, without losing the information about the
logical levels (including intermediate nets and terminals).

Constraints and assertions are a wide-ranging topic,
covering items that are timing, electrical, and/or physical
in nature. Work is proceeding to expand the capabilities
of the OA Technology Database to represent constraints
and assertions for timing and signal integrity. We’re in
the process of adding physical (foundry) rules for 90nm
and 65nm process nodes. We expect to ultimately add
support for timing models (.lib and/or ALF support, OLA
support). The current state can support physical
technology rules for 130nm. The goal is to be able to
support RTL-to-Silicon technology rules for 65nm. This
will be an ongoing effort with continuous improvement in
each of the OA DB releases over the next several years.

Another area of great interest to the OpenAccess
Coalition is the work taking place in the semiconductor
mask-making and equipment areas called the Universal
Data Model, or UDM (Figure 8 [5]).

Figure 8 [5]

While OpenAccess currently supports IC design from
RTL through GDSII levels, it stops short of supporting
tasks from tape-out through wafer fabrication. Support
will be added for tape-out tasks such as Layer Filtering,
Scaling and Shrinking, and Reticle Enhancement
Technology. Support for data preparation tasks such as
Tonality and Mirroring, Sizing, Fracturing, and Job
Composition will be added. Support for mask-making
tasks such as Writing, Inspection and Repair, and
Metrology will be added. Finally, support for wafer-
fabrication tasks like Lithography, Yield Analysis, and
Test will be added [5]. This is an ongoing topic, and the
advances in this area will be evolutionary and will take
place in each of the OA DB releases over the next several
years. We will incorporate available standards wherever
possible, such as the OASIS (or NSF) work, the SEMI
P10 standard, and of course, the SEMI UDM work itself
[6].

X1

TOP

Y1 Z1

Module / Occurrence
Domain

ZX Y
TOP

Y1: Y Z1: Z

Layout Perspective

X1: X

A1

A

B1

B

X1

TOP

Y1 Z1

ZX Y

Block
Domain

DesignDesign

Tape Out
Layer Filtering

Scaling/Shrinking
RET

Logical-Physical Verification

Tape Out
Layer Filtering

Scaling/Shrinking
RET

Logical-Physical Verification

Data Prep
Tonality/Mirroring

Sizing
Fracturing

Job Composition

Data Prep
Tonality/Mirroring

Sizing
Fracturing

Job Composition

Mask Making
Writing

Inspection/Repair
Metrology

Mask Making
Writing

Inspection/Repair
Metrology

Wafer Fabrication
Lithography
Metrology

Yield Analysis
Test

Wafer Fabrication
Lithography
Metrology

Yield Analysis
Test

OpenAccess
Shared

Knowledge
Shared

Knowledge

7 Conclusions
The requirements for interoperability take two main
forms: framework capabilities and technology, and
application-level resolve. OpenAccess provides the
interoperability at the framework levels, and sets the
stage for construction of highly-interoperable flows that
use a variety of models. The models range from using
the database as an interchange format, to using the
database as an in-memory model. A greater level of
integration with OpenAccess allows greater
modularization and reuse of application level components
in products, but is not required or even appropriate for
each application within a flow. Lastly, even use of a
common in-memory model is not a guarantee of
interoperability. Applications must take continual care to
make sure they have the correct semantic interpretation of
the data and that they use the data in a way that enables
use of the greatest number of downstream tools. If we
make good use of infrastructure technology and keep
clear application discipline, we should finally be able to
build fully-interoperable multi-vendor flows.

References

[1] S. Schulz, “Open Access 2003 Conference Keynote”,
OpenAccess 2003 Conference, February 2003

[2] D. Cottrell and A. Graham, “What is OpenAccess?”,

http://www.si2.org/openaccess, January 2003

[3] J. Santos, “OpenAccess Architecture and Design
Philosophy”, OpenAccess 2002 Conference, April 2002

[4] OpenAccess Change Team, “OACT 2003 Roadmap”,
http://www.openeda.org/openaccess, April 2003

[5] D. Cottrell, “UDM Business Case”, February 2003

[6] T. Grebinski, “SEMI IC Design/Photomask Data Path
Task Force”, International Sematech MASC Strategy
Meeting, February 2003

