
Design Systems Evolution and the Need for a Standard Data Model

John Darringer
IBM T J Watson Research Center

Yorktown Heights, NY
and

Joseph Morrell
IBM Microelectronics

East Fishkill, NY

Abstract
Design systems have evolved over the years from batch
processing systems to highly integrated suits of tools
sharing design data in memory. To support today’s and
future chip designs, a user must have such a tightly-
integrated system and is forced to purchase the entire
system from a single vendor. Small EDA companies must
support many proprietary interfaces to market their new
tools. To enable choice in purchasing tools, to promote
innovation by lowering the barrier to entering the EDA
market and to accelerate the transfer of innovative
research into production use, the industry needs a
standard data model and a common API for accessing
design data in memory. The requirement is more than a
“nice to have”, it is essential for designers to keep pace
with technology and will only be met with strong user
support.

1 Introduction
Silicon technology has had a truly remarkable record of
progress over the last fifty years from chips with a single
gate to today’s system-on-a-chip designs with a capacity
of nearly 100 million gates. Design systems too have
evolved from initially just keeping track of component
interconnections to automatically generating gates for
chips that satisfy constraints on area, power,
performance, noise and yield [1]. IBM began developing
design systems in the 1950’s to support its designer’s use
of its most advanced technology. As technology
advanced and designs became more complex, design
systems needed to consider the growing number of issues
confronting designers. Moreover, the historically
sequential process of optimizing one factor at a time has
been replaced with tightly-coupled applications that work
together to simultaneously consider multiple factors.

Today, IBM still builds its own design systems, but tries
to take advantage of vendor tools when ever possible. In
the past the task of evaluating and integrating a vendor
tool took time, but was helped by the “standard” file
formats. But, we can no longer afford to have files
between key design system applications. They must
work with shared design date in memory through an

application program interface (API). The lack of a
standard here means that we can rarely afford the time
and effort to evaluate a new tool from an EDA vendor or
a prototype from a university.

For design systems to keep pace with technology they
must continue to evolve. The need to tightly couple
critical analysis and optimization applications through
shared memory will continue to grow. Without a
standard way of connecting these new applicators there
will be no way to combine the best algorithms from
different suppliers. The result will be a market with a
few very expensive design systems each with a subset of
the best applications.

Design Systems in IBM - The Early Years
IBM built its first design system in the late 1950s [2]. It

used a central data base, stored on tape, to manage the
logic diagrams for its 9000-circuit 7094 computer.
 In the 1960s the 3033 machine had a CPU of 90000

circuits and hierarchy was introduced to handle the
growing design information. A behavioral simulator was
added to help confirm correct operation and an automatic
placement tools was added to position chips containing a

TapeEdit Netlist

Check
Design Rules

Print
Netlist

Figure 1 - 1950s Design System

Tape
Edit Netlist
(Hierarchy)

Behavioral
Simulation

Auto Place
(Card)

Figure 2 - 1960s Design System

few gates on cards. The data base was still maintained on
tape.

In the late 1960s and early 1970s a more integrated
Engineering Design System emerged (EDS) [3]. It
provided a random access data base stored on disk along
with an early data model that allowed key applications to
share data in memory.

EDS maintained both logical and physical data including
layouts for chips, cards, boards and cables. Register-
transfer level simulation was introduced to handle larger
design, such as the 3081 with its 460K circuit CPU.
Automatic placement and wiring was provided for the
704 circuit chips as well as the 100-chip water-cooled
modules and the 8-module boards. Static timing analysis
was used to verify the systems performance, and
automatic pattern generation was used to produce vectors
from test in manufacturing. EDS was expanded and used
throughout the 1970s and 1980s to support all of IBM’s
advanced hardware products.

Tight-Coupling Begins
In the 1980s, IBM pioneered the production use of logic
synthesis by automatically generating most of the chips
for its large mainframe systems. Hundreds of chips were
processed using a sequential flow with full-chip synthesis
followed by static timing analysis. The output of timing

was used to revise constraints for another full-chip
synthesis. This process usually converged in a few
iterations with a satisfactory implementation. But as

chips became larger and more complex, runtimes
became a concern. At this point Incremental Timing
Analysis was developed and integrated with synthesis
[4]. Synthesis transformations could then consider a
small change to the chip logic and calculate the impact
to timing and then decide to commit the change or back
it out. The new timing analyzer would only recalculate
timing for the effected components. This advance not
only greatly improved the time required for closing
timing, but served as an example for future design
system evolution.

During the 1990s, as chip designs continued to grow in
size and interconnect delays became a larger portion of
the system cycle times, placement started to have a larger
effect of performance. For some million-gate designs the
iteration between synthesis and placement became a
concern and Incremental Placement was integrated [5].
Now a change could be considered to the logic and its

placement with excellent prediction of the impact on
final chip performance.

These new incremental tools were completely new
applications written to operate on a representation of the
design stored in memory. Extensions were required to
the data model to make each advance possible and the
design of the data model was key to the overall
improvement in overall processing times.

The movement of more analysis and optimization tools
into the tightly-coupled cluster continues as new design
issues emerge. For large complex chips placement
alone is not sufficient to accurately predict performance.
Wire routing information is needed to determine path
lengths more precisely and to identify potential noise
problems. Thus we now see Incremental Global
Routing joining the cluster with Incremental Noise

Edit RTL, Netlist RTL & Gate Simulation

Auto Place & Wire

Repository

Data
Model

Static Timing

Test Generation

Edit layout
Chip, Module, Board

Figure 3 - Engineering Design System

RTL
Design

Place

Synthesis

RTL
Design

Synthesis

Incremental
Timing

T TP

Wire

Wire

Incremental
Placement

Figure 5 - More Tight Coupling

RTL
Design

Place

Synthesis T

Wire

Tight-Coupling

RTL
Design

Synthesis

Timing
Analysis

Place

Wire

Figure 4 - Initial Tight Coupling 1980s

Analysis close behind and manufacturability in the wings.

New Design System Architecture

Common data model
In memory

Incremental applications

Modular applications

Cockpit controls methodology

Standard interfaces for data and control
New standard process required

S T

WP

Cockpit

N

Data
Model

New Emerging ArchitectureNew Emerging Architecture

It was evident that a new design system architecture was
emerging. Advancing technology and more complex
designs were forcing designers to deal with a ever
increasing list of issues. For design systems to keep up,
they too would have to deal with these issues and could
not afford to treat them sequentially with files separating
analysis and optimization applications. We have had a
lot of experience developing central data models with
supporting repositories and knew the dangers of too much
centralization. Most well know algorithms depend on a
specific data representation for optimum performance and
no one representation is best for all. In the development
of IBM’s Integrated Data Model (IDM) its designers
strived to share the minimum information between
applications, while avoiding unnecessary conversions.
There are still many cases where an analysis application
will copy data from IDM to its internal data
representation, perform its analysis and then put the
results back in IDM. But, in these cases the benefits of
looking at only the changed data and of avoiding file
reads and writes overwhelm the cost of data copying.
This careful analysis and justification is required in
deciding which applications to tightly couple.

Many other applications, such as simulation and test
generation access data from IDM, but are not tightly-
coupled. They benefit from direct access to the most
current design information but do not need to participate
in design optimization - yet.

The Need for a Standard Data Model API
No one company can develop all the ideas and tools
needed to keep design automation on track to support the
continued advancement of silicon technology. To remain
competitive, designers must have ready access to the
latest advances, no matter what university or company
they come from. The movement to tightly-coupled
design systems and today’s use of proprietary data
models greatly compounds the task of connecting and

evaluating a new tool. IBM began advocating a standard
data model interface in the early 1990’s. We supported
Sematech’s efforts to define CHDStd and have been
actively participating in the OpenAccess Coalition. In
particular, we have been contributing to the OpenAccess
architecture and planning for an OpenAccess interface on
IBM’s Integrated Data Model.

Engagement with OpenAccess
When Sematech cancelled it’s Design Thrust activities in
the late 90’s, it thankfully recognized the potential
significance of the CHDStd effort that it had been
supporting and arranged for the transfer of this effort to
Silicon Integration Initiative (Si2) [6] in an attempt at
keeping this momentum of establishing an industry
standard data model alive. Most of the companies that
had been supporting CHDStd also understood its
potential and agreed to transfer that support as well. At
about the same time, Cadence Design Systems
recognized the strong customer demand for a standard
and made an “open source” offer of its emerging database
technology, known as Genesis. This was the birth of
what is now known as OpenAccess (OA) and the
OpenAccess Coalition (OAC) [7]. IBM, as a significant
player in the CHDStd effort, participated in this transfer
and has therefore been involved with the OAC since its
inception. In fact, it shares the two “joint chief architect”
positions with Cadence on the OAC Change Team, the
technical body changed with overseeing the evolution of
the standard.

Still, IBM recognizes that simple participation in the
OAC will not achieve its objective of being able to “plug
and play” its internal tools with commercial and
university tools. This level of interoperability is required
to provide the “best of breed” support of its
semiconductor technologies, which is the fundamental
reason that IBM has been supporting these activities for
so long. Therefore, we have established a two-phase plan
for migrating our internal tools towards the industry
standard.

The first phase is actively under way and involves
building in-memory translators between OA and IDM.
There are three objectives for this phase of development:
1. We must determine how well OA supports IBM

technologies. It is clear that IDM supports IBM’s
technologies today and during the implementation of
these translators, we can also determine how well
OA supports the IDM constructs and, as a by-
product, infer how well OA supports the underlying
IBM technology modeling requirements.

2. We must understand how well IDM is aligned with
OA. This is a pre-requisite to the next phase of the
migration. Our experience has shown that the best

way to address this at a detailed level is by
implementing such a set of translators.

3. Although the end goal of our migration is to enable
tight integration with commercial and university
tools, the OA!IDM translators will at least allow
the launching of the IBM capabilities as “point tools”
within an OA based flow.

Depending on what we learn during the first phase of the
migration, we will move on to the second phase of the
migration which is to implement an IDM “compatibility
layer” on top of the OA interfaces. This is also a
technique that has been successfully used within IBM in
the past for similar purposes, that is to migrate separate
collections of tools to a single data model by providing a
thin layer of code which dynamically translates the data
presented by the underlying interfaces to match the
interfaces used by the tools being migrated, on an object
by object basis. Obviously, the outright feasibility, as
well as the end performance, of providing such a layer
will be dependent upon how closely aligned the two sets
of interfaces are. The expectation is that, for the most
part, this will not be a significant concern. For those
cases where it is a concern, we have three options:
1. We can propose OA extensions through the OAC

Change Team process to enable features not
currently supported by OA.

2. We can use the robust OA extensibility features to
extend OA for our own use. (As an aside, these
extensibility features may also be useful in
combination with the first option to “prototype”
proposed extensions before making them a formal
part of the standard.)

3. We can actually change the IDM modeling to better
align with OA which, of course, may require an en
masse migration of our tools.

Regardless, we may continue to maintain the native IDM
implementation for a period until running with native OA
tools becomes the normal mode of operation.

Opportunities for EDA Companies and Universities
Given the growing adoption of OpenAccess, it makes
sense for EDA companies and Universities to develop
their tools and prototypes on the OpenAccess API. First,
they can take advantage of a highly efficient production
data base to jump start their development. The
extensibility features of OpenAccess enable
experimentation with new data types where needed.
Second, when their tools or prototypes become ready, it
will much easier to integrate them into a customers
environment for early evaluation and feedback. Neither
the EDA company nor the customer need to waste time
developing translators that also decrease effectiveness.
Finally, given the availability of source code for the
reference implementation of the API, means that the

users of Open Access have much more control of their
product development or research direction.

Summary
Design systems have evolved over the years from batch
processing systems to highly integrated suits of tools
sharing design data in memory, all to support high-
performance chip designs. Today, the many vendor-
specific proprietary data models force a user to purchase
such a tightly-integrated system from a single vendor and
they make it difficult for small EDA companies to enter
the market. The industry needs a standard API for design
data to enable choice in purchasing tools, to promote
innovation and to accelerate the transfer of innovative
research into production use. The requirement is more
than a “nice to have”, it is essential for designers to keep
pace with technology and will only be met with strong
user support. The OpenAccess coalition provides a
forum for developing such a standard to meet the needs
of chip designers and to enable innovative tool
development by EDA companies and Universities for the
future.

References
[1] J.A. Darringer, John Darringer, Evan Davidson,

David Hathaway, Bernd Koenemann, Mark
Lavin, Joseph Morrell, Khalid Rahmat,
Wolfgang Roesner, Erich Schanzenbach,
Gustavo Tellez, Louise Trevillyan, “EDA in
IBM: Past, Present and Future”, IEEE Trans. On
CAD, Vol. 19, No. 12, Dec. 2000, pp. 1476-
1497.

[2] P.W. Case, H.H. Graff, M. Kloomak, “The Recording
Checking and Printing of Logic Diagrams”,
Proceedings of the Eastern Joint Computer
Conference, Philadelphia, PA, 1958, pp. 108-
118.

[3] P.W. Case, M. Correia, W. Gianopulos, W. R. Heller,
H. Ofek, T. C. Raymond, R. L. Simek, C. B.
Stieglitz, “Design Automation in IBM”, IBM
Journal of Research and Development, Vol 25,
No5, Spt. 1981, pp 631-646.

[4] R.P. Abato, A.D. Drumm, and D.J. Hathaway,
L.P.P.P. van Ginneken, “Incremental Timing
Analysis”, U.S. patent 5,508,937, 16 April,
1996.

[5] Hojat, Villarrubia, "An integrated synthesis and
placement approach for timing closure of
PowerPC microprocessors", International
Conference on Computer Design, 1997.

[6] si2.org
[7] si2.orb/openaccess

