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Abstract 
Design systems have evolved over the years from batch 
processing systems to highly integrated suits of tools 
sharing design data in memory.  To support today’s and 
future chip designs, a user must have such a tightly- 
integrated system and is forced to purchase the entire 
system from a single vendor.  Small EDA companies must 
support many proprietary interfaces to market their new 
tools.  To enable choice in purchasing tools, to promote 
innovation by lowering the barrier to entering the EDA 
market and to accelerate the transfer of innovative 
research into production use, the industry needs a 
standard data model and a common API for accessing 
design data in memory.  The requirement is more than a 
“nice to have”, it is essential for designers to keep pace 
with technology and will only be met with strong user 
support.  
 
1 Introduction 
Silicon technology has had a truly remarkable record of 
progress over the last fifty years from chips with a single 
gate to today’s system-on-a-chip designs with a capacity 
of nearly 100 million gates.  Design systems too have 
evolved from initially just keeping track of component 
interconnections to automatically generating gates for 
chips that satisfy constraints on area, power, 
performance, noise and yield [1].  IBM began developing 
design systems in the 1950’s to support its designer’s use 
of its most advanced technology.  As technology 
advanced and designs became more complex, design 
systems needed to consider the growing number of issues 
confronting designers.  Moreover, the historically 
sequential process of optimizing one factor at a time has 
been replaced with tightly-coupled applications that work 
together to simultaneously consider multiple factors.    
 
Today, IBM still builds its own design systems, but tries 
to take advantage of vendor tools when ever possible.  In 
the past the task of evaluating and integrating a vendor 
tool took time, but was helped by the “standard” file 
formats.  But, we can no longer afford to have files 
between key design system applications.  They must 
work with shared design date in memory through an 

application program interface (API).  The lack of a 
standard here means that we can rarely afford the time 
and effort to evaluate a new tool from an EDA vendor or 
a prototype from a university. 
 
For design systems to keep pace with technology they 
must continue to evolve.  The need to tightly couple 
critical analysis and optimization applications through 
shared memory will continue to grow.  Without a 
standard way of connecting these new applicators there 
will be no way to combine the best algorithms from 
different suppliers.  The result will be a market with a 
few very expensive design systems each with a subset of 
the best applications.    
 
Design Systems in IBM - The Early Years 
IBM built its first design system in the late 1950s [2].  It 

used a central data base, stored on tape, to manage the 
logic diagrams for its 9000-circuit 7094 computer.  
 In the 1960s the 3033 machine had a CPU of 90000 

circuits and hierarchy was introduced to handle the 
growing design information.  A behavioral simulator was 
added to help confirm correct operation and an automatic 
placement tools was added to position chips containing a 
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few gates on cards.  The data base was still maintained on 
tape. 
 

In the late 1960s and early 1970s a more integrated 
Engineering Design System emerged (EDS) [3].  It 
provided a random access data base stored on disk along 
with an early data model that allowed key applications to 
share data in memory. 
 
EDS maintained both logical and physical data including 
layouts for chips, cards, boards and cables.  Register-
transfer level simulation was introduced to handle larger 
design, such as the 3081 with its 460K circuit CPU.  
Automatic placement and wiring was provided for the 
704 circuit chips as well as the 100-chip water-cooled 
modules and the 8-module boards.  Static timing analysis 
was used to verify the systems performance, and 
automatic pattern generation was used to produce vectors 
from test in manufacturing.  EDS was expanded and used 
throughout the 1970s and 1980s to support all of IBM’s 
advanced hardware products. 
 
Tight-Coupling Begins 
In the 1980s, IBM pioneered the production use of logic 
synthesis by automatically generating most of the chips 
for its large mainframe systems.  Hundreds of chips were 
processed using a sequential flow with full-chip synthesis 
followed by static timing analysis.  The output of timing 

was used to revise constraints for another full-chip 
synthesis.  This process usually converged in a few 
iterations with a satisfactory implementation.  But as 

chips became larger and more complex, runtimes 
became a concern.  At this point Incremental Timing 
Analysis was developed and integrated with synthesis 
[4].  Synthesis transformations could then consider a 
small change to the chip logic and calculate the impact 
to timing and then decide to commit the change or back 
it out.  The new timing analyzer would only recalculate 
timing for the effected components.  This advance not 
only greatly improved the time required for closing 
timing, but served as an example for future design 
system evolution. 

 

During the 1990s, as chip designs continued to grow in 
size and interconnect delays became a larger portion of 
the system cycle times, placement started to have a larger 
effect of performance.  For some million-gate designs the 
iteration between synthesis and placement became a 
concern and Incremental Placement was integrated [5].  
Now a change could be considered to the logic and its 

placement with excellent prediction of the impact on 
final chip performance.    
 
These new incremental tools were completely new 
applications written to operate on a representation of the 
design stored in memory.  Extensions were required to 
the data model to make each advance possible and the 
design of the data model was key to the overall 
improvement in overall processing times. 
 
The movement of more analysis and optimization tools 
into the tightly-coupled cluster continues as new design 
issues emerge.  For large complex chips placement 
alone is not sufficient to accurately predict performance.  
Wire routing information is needed to determine path 
lengths more precisely and to identify potential noise 
problems.  Thus we now see Incremental Global 
Routing joining the cluster with Incremental Noise 
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Figure 3 - Engineering Design System
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Analysis close behind and manufacturability in the wings.  
 
New Design System Architecture 

Common data model 
In memory 

Incremental applications 

Modular applications 

Cockpit controls methodology 

Standard interfaces for data and control 
New standard process required

S T

WP

Cockpit

N

Data
Model 

New Emerging ArchitectureNew Emerging Architecture  

 
 
It was evident that a new design system architecture was 
emerging.  Advancing technology and more complex 
designs were forcing designers to deal with a ever 
increasing list of issues.  For design systems to keep up, 
they too would have to deal with these issues and could 
not afford to treat them sequentially with files separating 
analysis and optimization applications.  We have had a 
lot of experience developing central data models with 
supporting repositories and knew the dangers of too much 
centralization.  Most well know algorithms depend on a 
specific data representation for optimum performance and 
no one representation is best for all.  In the development 
of IBM’s Integrated Data Model (IDM) its designers 
strived to share the minimum information between 
applications, while avoiding unnecessary conversions.  
There are still many cases where an analysis application 
will copy data from IDM to its internal data 
representation, perform its analysis and then put the 
results back in IDM.  But, in these cases the benefits of 
looking at only the changed data and of avoiding file 
reads and writes overwhelm the cost of data copying.  
This careful analysis and justification is required in 
deciding which applications to tightly couple.   
 
Many other applications, such as simulation and test 
generation access data from IDM, but are not tightly-
coupled.  They benefit from direct access to the most 
current design information but do not need to participate 
in design optimization - yet.           
 
The Need for a Standard Data Model API 
No one company can develop all the ideas and tools 
needed to keep design automation on track to support the 
continued advancement of silicon technology.  To remain 
competitive, designers must have ready access to the 
latest advances, no matter what university or company 
they come from.  The movement to tightly-coupled 
design systems and today’s use of proprietary data 
models greatly compounds the task of connecting and 

evaluating a new tool.  IBM began advocating a standard 
data model interface in the early 1990’s.  We supported 
Sematech’s efforts to define CHDStd and have been 
actively participating in the OpenAccess Coalition.  In 
particular, we have been contributing to the OpenAccess 
architecture and planning for an OpenAccess interface on 
IBM’s Integrated Data Model. 
 
Engagement with OpenAccess 
When Sematech cancelled it’s Design Thrust activities in 
the late 90’s, it thankfully recognized the potential 
significance of the CHDStd effort that it had been 
supporting and arranged for the transfer of this effort to 
Silicon Integration Initiative (Si2) [6] in an attempt at 
keeping this momentum of establishing an industry 
standard data model alive.  Most of the companies that 
had been supporting CHDStd also understood its 
potential and agreed to transfer that support as well.  At 
about the same time, Cadence Design Systems 
recognized the strong customer demand for a standard 
and made an “open source” offer of its emerging database 
technology, known as Genesis.  This was the birth of 
what is now known as OpenAccess (OA) and the 
OpenAccess Coalition (OAC) [7].  IBM, as a significant 
player in the CHDStd effort, participated in this transfer 
and has therefore been involved with the OAC since its 
inception.  In fact, it shares the two “joint chief architect” 
positions with Cadence on the OAC Change Team, the 
technical body changed with overseeing the evolution of 
the standard.  
 
Still, IBM recognizes that simple participation in the 
OAC will not achieve its objective of being able to “plug 
and play” its internal tools with commercial and 
university tools.  This level of interoperability is required 
to provide the “best of breed” support of its 
semiconductor technologies, which is the fundamental 
reason that IBM has been supporting these activities for 
so long.  Therefore, we have established a two-phase plan 
for migrating our internal tools towards the industry 
standard.  
 
The first phase is actively under way and involves 
building in-memory translators between OA and IDM.  
There are three objectives for this phase of development: 
1. We must determine how well OA supports IBM 

technologies.  It is clear that IDM supports IBM’s 
technologies today and during the implementation of 
these translators, we can also determine how well 
OA supports the IDM constructs and, as a by-
product, infer how well OA supports  the underlying 
IBM technology modeling requirements.  

2. We must understand how well IDM is aligned with 
OA. This is a pre-requisite to the next phase of the 
migration. Our experience has shown that the best 



way to address this at a detailed level is by 
implementing such a set of translators. 

3. Although the end goal of our migration is to enable 
tight integration with commercial and university 
tools, the OA!IDM translators will at least allow 
the launching of the IBM capabilities as “point tools” 
within an OA based flow. 

 
Depending on what we learn during the first phase of the 
migration, we will move on to the second phase of the 
migration which is to implement an IDM “compatibility 
layer” on top of the OA interfaces.  This is also a 
technique that has been successfully used within IBM in 
the past for similar purposes, that is to migrate separate 
collections of tools to a single data model by providing a 
thin layer of code which dynamically translates the data 
presented by the underlying interfaces to match the 
interfaces used by the tools being migrated, on an object 
by object basis.  Obviously, the outright feasibility, as 
well as the end performance, of providing such a layer 
will be dependent upon how closely aligned the two sets 
of interfaces are.  The expectation is that, for the most 
part, this will not be a significant concern.  For those 
cases where it is a concern, we have three options: 
1. We can propose OA extensions through the OAC 

Change Team process to enable features not 
currently supported by OA. 

2. We can use the robust OA extensibility features to 
extend OA for our own use.  (As an aside, these 
extensibility features may also be useful in 
combination with the first option to “prototype” 
proposed extensions before making them a formal 
part of the standard.) 

3. We can actually change the IDM modeling to better 
align with OA which, of course, may require an en 
masse migration of our tools. 

Regardless, we may continue to maintain the native IDM 
implementation for a period until running with native OA 
tools becomes the normal mode of operation.  
 
Opportunities for EDA Companies and Universities  
Given the growing adoption of OpenAccess, it makes 
sense for EDA companies and Universities to develop 
their tools and prototypes on the OpenAccess API.  First, 
they can take advantage of a highly efficient production 
data base to jump start their development.  The 
extensibility features of OpenAccess enable 
experimentation with new data types where needed.  
Second, when their tools or prototypes become ready, it 
will much easier to integrate them into a customers 
environment for early evaluation and feedback.  Neither 
the EDA company nor the customer need to waste time 
developing translators that also decrease effectiveness. 
Finally, given the availability of source code for the 
reference implementation of the API, means that the 

users of Open Access have much more control of their 
product development or research direction. 
 
Summary  
Design systems have evolved over the years from batch 
processing systems to highly integrated suits of tools 
sharing design data in memory, all to support high-
performance chip designs.  Today, the many vendor-
specific proprietary data models force a user to purchase 
such a tightly-integrated system from a single vendor and 
they make it difficult for small EDA companies to enter 
the market.  The industry needs a standard API for design 
data to enable choice in purchasing tools, to promote 
innovation and to accelerate the transfer of innovative 
research into production use.  The requirement is more 
than a “nice to have”, it is essential for designers to keep 
pace with technology and will only be met with strong 
user support.  The OpenAccess coalition provides a 
forum for developing such a standard to meet the needs 
of chip designers and to enable innovative tool 
development by EDA companies and Universities for the 
future.   
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