The X Architecture: Roadmap for Design for Manufacturing Methodology

Presentation to Electronic Design Processes April 14, 2003

Ken Rygler, President Rygler and Associates, Inc.

Agenda

- Background
- Industry Challenges
- X Architecture
- X Architecture Supply Chain DFM
- Test Chip Results
- Summary

X Architecture DFM History

- Initial customer response positive
 - But can masks be made?
 - What about image fidelity? OPC? CDs?
- DuPont Photomasks produces first 180nm masks
- ASML prints 180nm silicon
- Numerical Technology implements OPC
- 130nm flow developed
- STM announces first test chips

Business Challenge: There is No Market for a Second-to-Market

Mid-90s: 6 month late → ~31% earnings loss¹

• Today: 3 months late = lose the market!

Silicon Failures Are Increasing

- 48% fail on first silicon¹
- 20% still fail on second spin
- 5% still fail on third spin

OPC Driving Up Photomask Costs

Source : July 2001 Sematech EDA Workshop, Toshiba

Photomask Patterning Impacts Mask Cost

Ebeam \$\$\$\$\$

Laser \$\$\$

Source: DPI

IC Design and Manufacturing Process Circa 1995

IC Design and Manufacturing Process, ca 2000

X Architecture: Large-Scale and Small-Scale Diagonals

www.xinitiative.org

- 20+% less interconnect
- 30+% fewer vias

The X Architecture

The X Architecture: Roadmap for Design for Manufacturability

130nm Mask-to-Wafer Supply Chain

Application of OPC on X Architecture 130nm Design

- Used Numerical iN-Tandem hybrid OPC
- Defined a "custom shape" for octagonal line end
 - Ensures limited data volume increase
 - Limits mask complexity and mask cost
 - Other OPC approaches would apply too aggressive OPC with possibly worse corrections

INITIAT

OPC Results

	Layer	Input (MB)	Output (MB)	Run Time (Hrs)	Estimated Production Run Time*
Bright Field	Metal 4	1.58	3.50	6.2	25 min
Dark Field			1.49	2.2	10 min
Bright Field	Metal 5	0.68	1.55	4.2	15 min
Dark Field			0.65	2.3	10 min

 Run times and output file sizes are well within normal ranges

INITIATIVE

* Times are estimated based on a 20-CPU distributed processing production environment

OPC Analysis: Octagonal Line Ends

OPC Analysis: Via Enclosure

Layout Silicon Image Y Original After OPC

Numerical Technologies OPC Conclusions

- Feature sizes below 250nm require resolution enhancement techniques
- OPC is a requirement for manufacturing of X Architecture metal layers with octagonal features
- Appropriate OPC approach and tools can produce run times, and output sizes consistent with Manhattan designs
- Analyses confirm manufacturability and yield

DuPont Photomasks Produces First 130nm Masks

- Results confirm manufacturability:
 - Confirms Etec's ALTA 4000 raster laser writer
 - Confirms optimization of inspection

Process Step	Capability Indicator		
Data fracture	Green		
Data volume	Green		
Write	Green		
CD Measurement	Green		
Defect Inspection	Green		

KLA-Tencor TeraStar Inspection Conditions

Two masks

- 250nm DR mask
- 130nm DR mask
- Inspection mode
 - Die-to-database
 - TeraStar standard algorithm XPA
- Criteria: Monitor real and false defect counts

250nm DR Mask: Examples of Real Defects and No False

- Example of two contamination defects found on angle geometry edges.
- Note no false defects at "elbows" as seen by previous generation inspection system.

KLA-Tencor Inspection Summary

The TeraStar F77 successfully inspects the 250nm DR and the 130nm X Architecture masks

- 250nm DR mask Most defects were large contamination – due to no pellicle
- 130nm DR mask Handled the OPC, few or no false defects

Nikon Experimental Conditions

- Exposed wafers using DuPont Photomasks 130nm generation masks with X Architecture data (metal 4 and 5 layers)
- Nikon used its NSR-S205C DUV scanner to expose the wafers
 - For 220nm X, NA0.68 s0.85 2/3 annular / negative resist
- Criteria:
 - Process window

Process Window Results

 More than acceptable process latitude with X Architecture

X Architecture

220nmDiagonal NA0.68 Sigma0.85 2/3Annular TOK TDUR-N850(375nmt/Nega) on AR3(60nmt)

ASML X Wafers Results E-Beam & ALTA comparison

X Technology - ebeam mask (Toshiba Machine EBM-3500) X Technology - laser mask (Etec ALTA-3700)

L/S (3 Bar Structure - Dense Lines)

Isolated Lines

 No difference is observed comparing e-beam and laser generated X Technology masks

ASML X Wafers Results

Manhattan geometries X Technology - ebeam mask (Toshiba Machine EBM-3500) X Technology - laser mask (Etec ALTA-3700)

3 Bar Structure - Dense Lines

Isolated Lines

INITIATIVE

 No difference in manufacturability observed between Manhattan and X Technology non-critical dimension interconnect layers

CD Uniformity Results

 More than acceptable CD uniformity with X Architecture

X Architecture

Dense 3s=4.6nm (2.1% of CD) Iso. 3s=7.7nm (3.5% of CD) Note: for wiring, up to +/-15% of CD is acceptable

Nikon's Conclusions:

- Using existing equipment and technology, the X Architecture is manufacturable today with sufficient process latitude and CD uniformity
- The X Architecture is a good additional test criteria for calibrating scanners for new technology nodes

X Architecture 130nm Testchip Results

- 25mm² test chip with combs, serpentines, via chains at minimum pitch
 - all results OK on 59 dice!
 - We are pretty confident that we can manufacture X at minimum pitch in 130nm!
- Next test chip in 90nm soon

Jean-Pierre Schoellkopf, Central R&D, STMicroelectronics

The X Architecture: Roadmap for Design for Manufacturability

Summary

- X Initiative developed "soup to nuts" design-tolithography flow to demonstrate manufacturability of diagonal routing
- Accumulated more than 30 members including leading semiconductor and photomask equipment suppliers, maskmakers, EDA companies, and semiconductor companies
- How can we leverage some of the lessons learned from this initiative to the broader DFM space?

IC Design and Manufacturing Process, ca 2005

INITIATIVE

