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Abstract 

The development process within the electronics 
design chain is adjusting to requirements caused by 
the complexity of today’s and tomorrow’s System 
on Chip (SoC) designs. Design for re-use is 
becoming a standard practice, sets new 
requirements for next generation tools and is 
leading to organizational changes within 
companies. 

Since 1998, we have discussed design methodology 
and tool requirements that would allow designers 
to create IP-dominated (SOC) devices at the system 
level of abstraction. This paper will review lessons 
learned in applying the proposed techniques to real 
design problems in the context of platform-based 
design. 

Furthermore this paper will review different 
techniques for IP Authoring required for modern 
SoC design. Different models of computation have 
to be supported to cover simulation and 
implementation of control, data flow and 
continuous time processing. Furthermore this 
paper will outline different techniques for IP 
Integration, focusing on early interaction within 
the design chain, between IP Creators and 
Integrators.  

The paper will close with lessons learned from user 
experiences by analyzing and comparing different 
use models of IP authoring for re-use and IP 
integration at the system level. Besides the model 
requirements for representing the IP blocks 
themselves, different solutions for test bench 
authoring and re-usable verification environments 
will be shown as well. 

 
1. Introduction 

Design of electronic products is currently undergoing a 
profound revolution throughout all application fields. The 
complexity of automotive, wireless and multimedia 
applications has been exploding over the last couple of 
years and the productivity of design teams had difficulties 
to keep up with this trend. Now this trend is even further 
accelerated by the demand for convergence products 
combining the disciplines of several application domains. 
Typical examples are the convergence of wireless 
communications and video and audio processing 
capabilities, and of course the entry of wireless and 
multimedia applications into the car. 

1.1. Market Drivers 

Two trends were fairly obvious – the development of the 
cost of manufacturing and the complexity issues. For 
silicon providers the average cost of a high end ASSP and 
the cost of fabrication and masks have increased 
significantly. Looking at 5x to 10x times return on the 
development cost, formerly attractive chip volumes are 
likely not be able to satisfy the return on investment needs 
in the future. On the other hand the task of system houses 
to efficiently design and verify embedded systems grows 
exponentially as embedded systems increase in capability. 

Facing these challenges designers are turning to new 
methodologies – integration platform based design and 
function-architecture co-design approaches driven from 
higher levels of abstraction at the system level.  

In order for these two approaches to be applied to 
electronics design it has become obvious that new 
technologies need to be made available by EDA 
companies which allow design at a higher level of 
abstraction.  

The current techniques of translating written, ambiguous 
specifications into register transfer level (RTL) 
descriptions for HW and C or assembler code for 
implementation SW are clearly running out of steam. 
Designers can verify at that level of abstraction the 
interaction of HW and SW using Co-Verification tools, the 
simulation speed for the amount of detail to be simulated 
at the complexity of today’s and tomorrow’s systems does 
not permit those techniques to make efficient design 
decisions regarding system partitioning etc.  

1.2. Platform Based Design 

The concept of platform-based design for systems on chip 
(SOC) allows semiconductor companies to capitalize of 
economy of scale for the silicon production. Several 
application instances of the same application area can be 
implemented on the same piece of silicon customizable 
and configurable using SW. The concept has been 
introduced in several publications, see [1], [2], [3] and [4]. 

A SOC integration platform is defined as a high 
productivity design environment, which specifically 
targets a product application domain, and which is based 
on a Virtual Component (VC) reuse, mix and match 
design methodology. Another definition of platform is “a 
family of architectures that satisfy a set of architectural 
constraints that are imposed to allow the re-use of HW and 
SW components”. Both of these definitions emphasize the 
concept of reuse, and also imply the creation of a family of 
derivative products based on a common platform HW-SW 
architecture. 
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Platforms in general consist of a fixed HW kernel, usually 
containing major on-chip communications structures and 
buses, processors, memory controllers, and common HW 
and SW components such as a basic set of peripherals, 
their device drivers, and a configurable RTOS; and a 
variable component which allows for customization into a 
stream of derivative products. These derivatives are 
created by two fundamental methods: 

• HW and/or SW virtual components, which have been 
pre-qualified as part of the integration platform to be 
suitable for integration into a derivative product, can 
be selected from a general library and used as-is. 

• Appropriate HW and SW components are selected, 
which can be modified during integration into the 
derivative in order to meet system functionality. 

The ideal in platform-based design allows derivatives to 
be constructed from true virtual components drawn from 
an IP library – reuse without modification. In this way, the 
analogy between PCB based design using standard off-the-
shelf components and SOC platform-based design is 
nearly complete.  

1.3. Function Architecture Co-Design 

However, to complete the PCB analogy of reuse without 
modification, we need to find a design method for SOC 
design as simple and productive as classical PCB design in 
which components can be easily swapped in and out 
physically, and use of physical cuts and jumpers allowed 
rapid re-wiring of these components into the overall 
system. Unfortunately, integrated SOC devices, like all 
ICs, do not lend themselves to these simple physical 
methods of system design.  We must find a better method, 
and one that inherently supports the platform and 
derivative design concept. This is the approach we call 
function-architecture co-design, which has originally been 
introduced in [5]. 

 

Figure 1: Y-Chart Methodology 

Function-architecture co-design is a ‘Y-chart’ 
methodology (see Figure 1), which is based on the concept 
of ‘orthogonalization of concerns’, in which designers 
describe a system in two explicitly separate ways. Firstly 
the function that the system is intended to provide; i.e., a 

model of the application, is described and secondly a 
candidate architecture is selected, which has the potential 
of realizing the function, including choices of IP blocks or 
virtual components in both HW and SW domains. 

The function is then explicitly mapped to the architecture, 
during which time all required HW-SW, HW-HW, and 
SW-SW partitioning is carried out. Both functional 
processing and communications interfaces are explicitly 
mapped to architectural resources.  During an analysis 
phase, performance and other studies of the suitability of 
the architecture to realize the function are carried out, and 
modifications to the architectural structure, the virtual 
components, or the system functionality are made until the 
design is brought into a feasible design space. 

Following this, communications detail is added to what 
starts out as a very abstract model of inter-function 
communications, refining it down to the generic bus-
transaction level and abstract communications protocol 
patterns, with specific characteristics of the chosen system 
buses modeled. Finally, export capabilities generate 
outputs from the tools that plug directly into HW-SW co-
verification environments, and implementation tools for 
both HW and SW portions of the system. 

2. Initial, General Lessons Learned 

The original discussions of platform-based design had 
been fairly abstract and theoretical. Projects undertaken 
since then show clearly that integration platforms come in 
significant variety, especially different grades of 
complexity. 

2.1. Platform Types and Users 

On the market we find today four different classes of 
platforms: 

• “Full Application Platforms”: These allow users to 
design full applications on top of HW/SW 
architectures. In these platforms a layer of firmware 
and driver SW separates the HW specific sections 
from the middleware and the application SW, which 
are exposed to the platform consumer. Prominent 
examples are the Philips nExperia, the TI OMAP and 
the Infineon MGold Platform. 

• “Processor Centric Platforms”: Typically centered 
around specific processors, these platforms focus on 
the SW access to a processor. They may or may not 
allow users to model complete applications - often 
specific HW elements have to be added on the user 
side to support these. Prominent examples the Improv 
JAZZ and the ST StarCore platforms. 

• “Communication Centric Platforms”: These 
platforms typically provide the user with a 
communication fabric optimized for a specific 
application domain. The users have to add 
components to design a complete application. 
Prominent examples the SONICs and the PalmChip 
architectures. 

• “Fully Programmable Platforms”: Adding 
programmable logic to the platform, users can 
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customize the platform using both HW and SW. 
Prominent examples are the Triscend, Altera 
Excalibur and Xilinx P-FPGA Platforms combining 
dedicated processors and programmable logic. 

The platform users vary from users expecting “shrink 
wrapped” platforms with complete HW and SW 
configurations to users who actually differentiate at all 
levels by adding SW routines and even adding in specific 
HW blocks tailored for a specific platform. 

2.2. Traditional Integration Approaches 

Figure 2 indicates the traditional approach of system 
integration as it is typically used today. Different parts of 
the system are developed using available IP Authoring 
techniques, which result in SW or HW implementations. 

The integration of all those system blocks is done after the 
implementation of the different system blocks in Verilog; 
VHDL or C/Assembler code has been done. At this point 
in the design process all the essential partitioning 
decisions mentioned above have been done already using 
ad hoc techniques. Finding at this point, that a module, 
which is implemented in SW, really should have been 
implemented in HW for performance reasons, can become 
a pivotal point in the career of a project manager. 

A system on silicon with a processor core, a complete 
MPEG-2 AV decoder and integrated memories runs at the 
RTL level easily 20- to 24 hours for the decoding of a 
PAL frame. This level of abstraction is clearly not suitable 
for the verification of audio and video synchronization 
effects, which often only happen after hundreds of frames. 
Furthermore have at this level implementations already 
committed to HW and SW and also the function and 
architecture of the design have been mixed. It is for 
economic reasons typically not possible to re-implement 
modules or even to consider a functional derivative at this 
point. 

2.3. Design Flows revisited 

From figure 2 it also easy to derive requirements for 
today’s design flows. It turns out that there is a distinct 

difference between IP Authoring and IP Integration, a 
difference that has to be addressed by EDA tools. 

At first the different IP blocks have to be implemented in 
an optimized fashion. In this process of “IP Authoring” 
designers would translate embedded system requirements 
into an abstract system level model. Abstract, un-timed C 
or C++ description techniques as used in SDL or Cadence 
SPW will ideally lead to an executable system level 
specification.  

 

Figure 3: IP Authoring 

These system level descriptions can be used to assess and 
analyze the suitability and configuration of algorithms 
used in the system context, for example the algorithms 
defining the channel decoding or the MAC layer in a cell-
phone. 

From this system level description the designer will then 
add implementation information which is required to 
refine the model from the abstract, un-clocked system 
level to the clocked implementation level. Again, Cadence 
SPW offers with the HW Design System [HDS] 
capabilities to support this design flow for HW. In the 
recent past C++ based techniques have been suggested for 
HW design as well. Together with implementation level 
class libraries they support C++ based design at the 

Figure 2: Traditional System Integration 



Session 7.2 

clocked implementation level. Figure 3 depicts a 
generalized IP Authoring design flow for HW and SW. 

For SW modules Telelogic TAU and Rational UML/RT 
support analogous techniques to derive from a system 
level SW description the actual SW implementation, 
which then can be directly used in an embedded system. 

Assuming a set of SW and HW IP libraries being in 
existence for a SOC Integration Platform a second, very 
important challenge has to be addressed for today’s SOC 
design – IP Integration as indicated in Figure 4. 

Again, design teams will start with embedded system 
requirement definitions. For SOC Integration Platforms 
the platform functionality has to be defined, the notion of 
“what” the design does. As SOC Integration Platforms are 
typically application specific, they might enable a 2.5G or 
3G wireless application, a multimedia design or an 
automotive application. Furthermore the platform 
architecture will be defined, the notion of “how” the 
application can be implemented using architectural 
components like busses, memories, processors, dedicated 
HW components combined with SW protocol stacks, 
application SW and real time operating systems (RTOS). 

 

Figure 4: IP Integration 

Function and architecture together define the integrated 
system, on which for the integration aspects the system 
performance, energy consumption and cost are important 
decision factors. A successful co-design tool has to 
therefore support the assessment of performance impacts 
of different implementation choices for IP prior to the 
system implementation. This allows, based on above 
mentioned decision criteria, efficient system platform 
configuration at the system (pre-implementation) level.  

In IP Integration flows design teams also do system 
refinement to move the design from the system to the 
implementation level. While the IP blocks itself ideally 
stay unmodified, refinement now refers to 
communication between IP blocks. Both functional 
refinement (e.g., refining how a 53 byte ATM cell has to 
be transmitted using six 8-byte bursts plus header 
transmission) and architectural refinement (e.g. refining 
that a HW SW communication is using a interrupt 
scheme with shared memory) have to be performed. 

Finally HW and SW have to be assembled to allow prior 
to SOC tape out implementation level co-verification of 
HW and SW. At this level of abstraction design teams will 
concentrate on HW/SW interface verification, as 
simulation speed does typically not allow complete system 
simulation. 

Note that co-design has to not only support HW/SW 
considerations but also the concurrent design of system 
function architecture, including considerations like bus 
and memory hierarchies, inter-block communication and 
SW-SW trade offs.  

Figure 5 depicts a complete design flow for both IP 
authoring and implementation. While in traditional design 
flows “system integration” mostly only happened at the 
implementation level, the complexities of today’s and 
future SOC designs require “true” system level integration 
a higher levels of abstraction. This is indicated with the 
upper arrow integrating abstract system level 
specifications. 

2.4. Moving to the next level of abstraction 

The assessment of alternative design implementations 
takes far too long at the implementation verification level 
to be efficient enough. 

In the past the industry gradually moved up the levels of 
abstraction from layout to transistors, from clusters of 
transistors to gates and from clusters of gates to RTL. In 
all these instances it was always typical to abstract 
characterized values from the respective lower level of 
abstraction to the next in order to allow predictive 
operations. So are gate delays and SDF the mechanisms to 
allow synthesis – the evaluation of different 
implementation options at that level of abstractions. To 
generalize this process it is necessary to characterize both 
the performance of the clustered elements and the 
performance of the communication between them. 

In gradually extending this process to the next level of 
abstraction the industry now meets a discontinuity. The 
blocks to be clustered are not alone HW modules 
anymore. The SW modules have an at least equally 
important role at the next level of abstraction –integrated 
HW/SW integration platforms. 

Figure 5: A connected IP Authoring and IP Integration Flow 
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The elements to be characterized in this case now are at 
least twofold: 

• Processing performance of the HW and SW modules. 
This is unlikely to be a simple parameter, one number. 
Instead this performance will depend on different 
states in the HW module and the chosen control path 
in a SW module. 

• Communication performance between HW and SW 
modules. This will include all possible permutations. 
Direct interfaces between HW modules characterized 
with different performance depending on the chosen 
handshake protocol. Interfaces between SW modules 
using services provided by real time operating 
systems (RTOS). Finally, the different options of 
communication between SW and HW and vice versa 
need to be characterized. This includes for example 
interrupts which trigger SW from HW and protocols 
in which to be accessed HW can be programmed. 

2.5. Cadence Virtual Component Co-Design 

Function-architecture co-design, when linked to platform-
based design, provides a sophisticated high productivity 
methodology. 

In cooperation with major partners representing the 
application domains automotive, wireless and multimedia, 
Cadence Design Systems has over the last three years 
developed the Virtual Component Co-Design (VCC) tools 
through the Felix initiative (see also [3], [4], [6], [7], [8], 
[9] and [10]). 

The resulting toolset - the VCC Environment - which was 
released in January 2000 after a considerable period of 
usage by technology partners and early adopters, is an 
environment for system level design facilitating function-
architecture co-design, HW/SW co-design and Intellectual 
Property (IP) reuse techniques. VCC is enhancing the 
traditional design methodologies for IP Authoring 
(creation of IP) with a new set of IP Integration 
techniques, which allow the efficient design of initial and 
derivative products in convergence application fields. 

3. The SOC Design Chain 

Probably the most significant lesson learned has been the 
fact the interaction within the design chain determines the 
use-model of system-level tools like Cadence SPW and 
VCC. 

There are several players involved in exchanging design 
data (see also [3]). Classical providers of Star-IP like 
ARM and MIPS provide their IP to system houses and 
SOC providers. This IP can be both HW, as for example in 
the case of processors, and SW as found in protocol stacks 
of wireless systems. 

System Houses are on the top of the design chain with the 
need to articulate the system requirements to their various 
suppliers. SOC Providers attempt to match these system 
requirements with providing applications specific 
platforms based on their silicon and SW supporting the 
processor types available in their silicon technology. 

Ideally the System Integrator wants to make integration 
decisions using a SOC platform provided by a 
semiconductor company as early as possible in the design 
cycle. Key design decisions that are taken at the system 
level include: 

• Support for required new standards 
• Functional bandwidth, throughput, and latency 

requirements 
• Communications resource bandwidth and latency, 

modeled at abstract and detailed levels of refinement 
• Energy consumption and cost 
• SW task decomposition, messaging and priorities 
• How much of the platform reference design can be re-

used in the derivative-- as-is, or with modifications? 
• How much estimated margin is there in a derivative 

design to handle unexpected issues during 
implementation? 

EDA tools must support delivery of models at several 
levels of abstraction –from system-level to 
implementation. 

4. Next Generation SOC Design Kits 

Three part engagements have become the norm. Suppliers 
of IP and integration platforms interact with their system 
customers. Cadence has in these projects taken the role of 
a facilitator. 

In order to allow efficient interaction within the design 
chain the different function and architecture components 
of a platform have to be delivered in library structures.  

To support the different requirements of System 
Integrators each element has to be delivered at the 
appropriate levels of abstraction for different phases in the 
design process. A couple of examples are outlined in the 
next paragraphs. 

4.1. HW Modules 

The highest level of abstraction for modules, which end up 
to be implemented in HW, has to be a pure functional 
model, which allows function architecture co-design. This 
functional description can be articulated using tools like 
Cadence SPW, C++ or any description which can be 
wrapped in a OMI (IEEE 1499) interface. 

For the actual HW implementation a set of performance 
models has to be provided, which allows the assessment, 
which specific HW implementation should be chosen. 
VCC supports these models through a simple Delay 
Scripting Language DSL. 

At the implementation level the RTL function should be 
made available through OMI for co-simulation and co-
verification. 

The most detailed model in the design kit will be the 
actual RTL model plus synthesis constraints. 

4.2. SW Modules 

The highest level of abstraction for modules, which end up 
to be implemented in SW, has to be again a pure 
functional model, which allows function architecture co-



Session 7.2 

design. This functional description can be articulated using 
tools like Telelogic TAU for SDL, C++ or any description 
which can be wrapped in a OMI (IEEE 1499) interface. 

For the actual SW implementation a set of performance 
models has to be provided, which allows the assessment, 
which specific SW implementation should be chosen. 
VCC supports these models through a simple Delay 
Scripting Language DSL.  

At the implementation level C can be again packed 
through OMI and made available for implementation level 
verification. 

The most detailed model in the design kit can be the 
assembler model, potentially even hand-optimized. 

4.3. Communication Models 

The communication between arbitrary HW and SW 
modules has to be modeled for evaluation of performance 
impacts using architecture services as provided in the 
VCC Environment. 

For implementation a synthesizable version of 
communication information can be made available which 
allows to move functions across HW /SW boundaries and 
automatically synthesize the interface afterwards. This 
process is called Communication Synthesis in the VCC 
environment. 

4.4. RISC Processors  

To enable SW estimation so called Virtual Processor 
Models can be provided, in the VCC Environment, which 
provide a characterization of the main instruction classes 
and allow the assessment of SW performance prior to 
implementation. Design decisions can be made at this 
level.  

For actual verification ISS models have to be provided, 
which allow the object code execution on a processor for 
the purpose of functional verification and HW/SW Co-
Verification 

4.5. DSPs 

To reflect the performance of tasks, which the DSP has 
been optimized for, the performance characterization as 
provided today in data books can be used in the VCC 
Environment in an executable fashion. 

For actual verification ISS again models have to be 
provided, which allow the object code execution on a 
processor for the purpose of functional verification and 
HW/SW Co-Verification 

4.6. Busses 

For the actual performance evaluation the delay and 
arbitration of the bus can be characterized in the VCC 
Environment. 

At the implementation level the detailed bus interface 
logic has to be available fully articulated. 

4.7. Memories 

For performance evaluation the memory access times and 
the information about burst modes etc. has to be provided. 

At the implementation level detailed, typically C based 
models, which check set up and hold times and reflect the 
actual memory allocation accurately. 

4.8. Real Time Operating Systems (RTOS) 

At the performance evaluation level a RTOS has to reflect 
the access to the processor (arbitration policy) plus the 
performance impact of context switching, e.g. start, stop, 
suspend and resume times. Furthermore the number of 
interrupts and RTOS services like timer and semaphores 
need to be available for evaluation. At the implementation 
Co-Verification level the object code of the RTOS can be 
booted on an ISS. 

5. IP Authoring Use Models 

The Cadence Signal Processing Work system (SPW) 
provides an efficient IP authoring infrastructure for digital 
signal processing algorithms.  

Initially researchers get started to explore new worlds, like 
we can see in the wireless communication space right now 
with its 4th generation, where datarates up to 100Mb and 
frequencies up to 66GHz are targeted. Ideas shape, 
standards start creating a marketplace and companies 
starting development. The products need to comply with 
the standards set before, differentiate by features to gain 
market acceptance and use resources efficiently to keep 
proper margins.  

5.1. Research Phase 

Scientists play with their ideas, on whiteboards, papers 
and create computer models to prove their ideas would 
work against a certain physical environment. They would 
use Cadence SPW to actually experiment with their 
preferred algorithms, analyze the results with SigCalc and 
plot and document their findings in papers they use at the 
next conference. Feedback goes into the refinement of the 
models, where ease of use, flexible-authoring paradigms 
likes to capture control, dataflow and time continuous 
domains is of essence. Experiments are mostly done in the 
floating domain; implementation is not a concern at all 
yet.  

5.2. Top Down Product Development 

New applications get visible, and industry predicts good 
business using the new standard. Development teams start 
working building reference models, introducing real 
channel effects and capture the performance data of a 
system, which should resemble the standard. The teams 
are building executable specifications, and bring on their 
own ideas for algorithms to address specific problems.  

Cadence SPW is widely used in the communications and 
multimedia industry to capture those simulation models, in 
fact, Cadence and partners like NIST [22] do actually also 
provide those models. Cadence follows changes in the 
standards immediately and delivers the enhanced models 
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to their respective customers ASAP, giving with this fast 
turnaround their customers the ability to concentrate on 
features they want use to differentiate. Getting a reference 
library gives a huge productivity boost and makes it easy 
for design teams to deliver on time [23].  

5.3. Product Development Applying Reuse 

Graphical, hierarchical parametrizable models written in 
C, C++, SystemC, UML  or behavioral analog languages 
allow for the best modeling styles selected for the task in 
mind. In fact, if you have implemented a design piece in a 
previous project already for HW, would you voluntarily 
recode that block in C so it can be simulated together with 
other newly created models? Simulators are required 
which can execute various simulation domains together 
without giving a performance hit to the user.  

 They need to support standard interfaces like OMI [24] 
and should allow a free mix of 
C/C++/SystemC/VHDL/Verilog/VerilogA as the Cadence 
SPW/NC-Sim environment [25] does. Reuse of previously 
generated HW blocks would not be a problem, and also 
the RF design team and the Baseband engineers can easily 
explore the performance of their end to end system before 
they integrate the first prototype in the labs.  

As the next step engineers now need to decide, which 
platform can deliver the right performance to realize the 
desired functionality. 

6. IP Integration Use Models 

The tool framework provided to users with the VCC 
environment has been designed in an open fashion and 
allows users to follow several types of use models. 

6.1. General Top Down Design Exploration 

Like the algorithmic exploration in IP Authoring 
techniques there is a lot of value in the exploration how 
systems connect and behave on different target 
architecture options. Ericsson reports in [11] their 
experience with HW/SW Co-Design and re-emphasizes 
the importance of separation of function and architecture. 
This enables much easier modification of designs at the 
system level and easier reuse of behavior and architecture 
virtual components. The ability to make ‘what-if’ kinds of 
changes in architectures and mappings is important to 
build understanding of the system under design. BMW 
reported at various occasions including [21] about their 
design space exploration efforts using VCC. 

6.2. Top Down Platform Exploration 

During the actual development of the platform trade of 
decisions have to be made. A system house will define a 
platform in which the architectural components are not yet 
bound to real implementations. This way trade offs 
between bus systems, memory hierarchies etc. can be 
analyzed and fed back to the development. 

In contrast a semiconductor house will define a platform 
depending on the availability of architecture components 
in their portfolio. This use model is applied during the 

development of an actual platform. The challenging part 
here is to define the range of application variants in an 
appropriate way. This range then directly translates into 
the amount of scalability within a platform. 

6.3. Bottom Up Platform Characterization 

Once a platform definition exists the different components 
can be characterized to reflect the implementation issues. 
Busses, RTOSs, processors etc. build the characterized 
components of a platform, which can be used by system 
houses as a target to map application variants to. ST 
Microelectronics reported in [18] about efforts to provide 
and characterize architectural components for 
consumption by internal and external customers. Philips 
reported in [12], [13] and [14] about efforts to characterize 
parts of a multimedia platform with a strong focus on the 
communication design. 

6.4. Configuration of Characterized Platform 

Having received a characterized platform the system house 
can map application derivatives to the platform and 
explore different alternatives. Magneti Marelli reports in 
[15] about their interaction with IP and architectural 
component providers. Motorola describes in [20] a similar 
use model. The platform has here not been formerly 
characterized except through the system-level design team. 
The BWRC also followed similar flows according to [17] 
during wireless protocol design. Thomson CSF (now 
Thales) describes in [16] how characterization of IP 
components worked and how they verified the 
characterization appropriately. 

As a common thread in this use model the configuration of 
the platform is moved up to the system-level, at which 
simulation times are more appropriate for design space 
exploration and trade off analysis. 

6.5. System-level Functional Verification 

As an additional use model customers are adopting 
functional verification approaches at the system-level. By 
definition a platform comes with some standard supported 
functionality. Once a platform consumer has created a 
derivative the scenarios, which were originally supported, 
have to be re-confirmed. 

6.6. Platform Assembly for Co-Verification 

The VCC Environment allows the design export feeding 
Co-Verification environments like Yokogawa VirtualICE 
and Mentor Seamless. The assembly process in itself – 
refining the architectural platform to the state at which 
top-level netlists and the associated SW can be exported – 
provides value as a front-end process to Co-Verification, 
in which the set up of the environment often is a 
cumbersome task. 

7. Conclusion 

Several use models for IP Authoring and IP Integration 
have been described based on the Cadence VCC and SPW 
solutions. The Cadence SPW toolset supports in version 
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4.7 the above mentioned use models and IP authoring 
flows. 

The Cadence VCC Environment supports in VCC 2.1 as 
of May 2001 the above shown techniques and is used by 
System Integrators and SOC providers to optimize their 
interaction in the SOC Design Chain. 
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