
Session 7.2 1

IP Authoring and Integration
for HW/SW Co-Design and Reuse - Lessons Learned

Frank Schirrmeister, Martin Meindl and Stan Krolikoski
Cadence Design Systems, San Jose, CA, USA

Abstract

The development process within the electronics
design chain is adjusting to requirements caused by
the complexity of today’s and tomorrow’s System
on Chip (SoC) designs. Design for re-use is
becoming a standard practice, sets new
requirements for next generation tools and is
leading to organizational changes within
companies.

Since 1998, we have discussed design methodology
and tool requirements that would allow designers
to create IP-dominated (SOC) devices at the system
level of abstraction. This paper will review lessons
learned in applying the proposed techniques to real
design problems in the context of platform-based
design.

Furthermore this paper will review different
techniques for IP Authoring required for modern
SoC design. Different models of computation have
to be supported to cover simulation and
implementation of control, data flow and
continuous time processing. Furthermore this
paper will outline different techniques for IP
Integration, focusing on early interaction within
the design chain, between IP Creators and
Integrators.

The paper will close with lessons learned from user
experiences by analyzing and comparing different
use models of IP authoring for re-use and IP
integration at the system level. Besides the model
requirements for representing the IP blocks
themselves, different solutions for test bench
authoring and re-usable verification environments
will be shown as well.

1. Introduction

Design of electronic products is currently undergoing a
profound revolution throughout all application fields. The
complexity of automotive, wireless and multimedia
applications has been exploding over the last couple of
years and the productivity of design teams had difficulties
to keep up with this trend. Now this trend is even further
accelerated by the demand for convergence products
combining the disciplines of several application domains.
Typical examples are the convergence of wireless
communications and video and audio processing
capabilities, and of course the entry of wireless and
multimedia applications into the car.

1.1. Market Drivers

Two trends were fairly obvious – the development of the
cost of manufacturing and the complexity issues. For
silicon providers the average cost of a high end ASSP and
the cost of fabrication and masks have increased
significantly. Looking at 5x to 10x times return on the
development cost, formerly attractive chip volumes are
likely not be able to satisfy the return on investment needs
in the future. On the other hand the task of system houses
to efficiently design and verify embedded systems grows
exponentially as embedded systems increase in capability.

Facing these challenges designers are turning to new
methodologies – integration platform based design and
function-architecture co-design approaches driven from
higher levels of abstraction at the system level.

In order for these two approaches to be applied to
electronics design it has become obvious that new
technologies need to be made available by EDA
companies which allow design at a higher level of
abstraction.

The current techniques of translating written, ambiguous
specifications into register transfer level (RTL)
descriptions for HW and C or assembler code for
implementation SW are clearly running out of steam.
Designers can verify at that level of abstraction the
interaction of HW and SW using Co-Verification tools, the
simulation speed for the amount of detail to be simulated
at the complexity of today’s and tomorrow’s systems does
not permit those techniques to make efficient design
decisions regarding system partitioning etc.

1.2. Platform Based Design

The concept of platform-based design for systems on chip
(SOC) allows semiconductor companies to capitalize of
economy of scale for the silicon production. Several
application instances of the same application area can be
implemented on the same piece of silicon customizable
and configurable using SW. The concept has been
introduced in several publications, see [1], [2], [3] and [4].

A SOC integration platform is defined as a high
productivity design environment, which specifically
targets a product application domain, and which is based
on a Virtual Component (VC) reuse, mix and match
design methodology. Another definition of platform is “a
family of architectures that satisfy a set of architectural
constraints that are imposed to allow the re-use of HW and
SW components”. Both of these definitions emphasize the
concept of reuse, and also imply the creation of a family of
derivative products based on a common platform HW-SW
architecture.

Session 7.2

Platforms in general consist of a fixed HW kernel, usually
containing major on-chip communications structures and
buses, processors, memory controllers, and common HW
and SW components such as a basic set of peripherals,
their device drivers, and a configurable RTOS; and a
variable component which allows for customization into a
stream of derivative products. These derivatives are
created by two fundamental methods:

• HW and/or SW virtual components, which have been
pre-qualified as part of the integration platform to be
suitable for integration into a derivative product, can
be selected from a general library and used as-is.

• Appropriate HW and SW components are selected,
which can be modified during integration into the
derivative in order to meet system functionality.

The ideal in platform-based design allows derivatives to
be constructed from true virtual components drawn from
an IP library – reuse without modification. In this way, the
analogy between PCB based design using standard off-the-
shelf components and SOC platform-based design is
nearly complete.

1.3. Function Architecture Co-Design

However, to complete the PCB analogy of reuse without
modification, we need to find a design method for SOC
design as simple and productive as classical PCB design in
which components can be easily swapped in and out
physically, and use of physical cuts and jumpers allowed
rapid re-wiring of these components into the overall
system. Unfortunately, integrated SOC devices, like all
ICs, do not lend themselves to these simple physical
methods of system design. We must find a better method,
and one that inherently supports the platform and
derivative design concept. This is the approach we call
function-architecture co-design, which has originally been
introduced in [5].

Figure 1: Y-Chart Methodology

Function-architecture co-design is a ‘Y-chart’
methodology (see Figure 1), which is based on the concept
of ‘orthogonalization of concerns’, in which designers
describe a system in two explicitly separate ways. Firstly
the function that the system is intended to provide; i.e., a

model of the application, is described and secondly a
candidate architecture is selected, which has the potential
of realizing the function, including choices of IP blocks or
virtual components in both HW and SW domains.

The function is then explicitly mapped to the architecture,
during which time all required HW-SW, HW-HW, and
SW-SW partitioning is carried out. Both functional
processing and communications interfaces are explicitly
mapped to architectural resources. During an analysis
phase, performance and other studies of the suitability of
the architecture to realize the function are carried out, and
modifications to the architectural structure, the virtual
components, or the system functionality are made until the
design is brought into a feasible design space.

Following this, communications detail is added to what
starts out as a very abstract model of inter-function
communications, refining it down to the generic bus-
transaction level and abstract communications protocol
patterns, with specific characteristics of the chosen system
buses modeled. Finally, export capabilities generate
outputs from the tools that plug directly into HW-SW co-
verification environments, and implementation tools for
both HW and SW portions of the system.

2. Initial, General Lessons Learned

The original discussions of platform-based design had
been fairly abstract and theoretical. Projects undertaken
since then show clearly that integration platforms come in
significant variety, especially different grades of
complexity.

2.1. Platform Types and Users

On the market we find today four different classes of
platforms:

• “Full Application Platforms”: These allow users to
design full applications on top of HW/SW
architectures. In these platforms a layer of firmware
and driver SW separates the HW specific sections
from the middleware and the application SW, which
are exposed to the platform consumer. Prominent
examples are the Philips nExperia, the TI OMAP and
the Infineon MGold Platform.

• “Processor Centric Platforms”: Typically centered
around specific processors, these platforms focus on
the SW access to a processor. They may or may not
allow users to model complete applications - often
specific HW elements have to be added on the user
side to support these. Prominent examples the Improv
JAZZ and the ST StarCore platforms.

• “Communication Centric Platforms”: These
platforms typically provide the user with a
communication fabric optimized for a specific
application domain. The users have to add
components to design a complete application.
Prominent examples the SONICs and the PalmChip
architectures.

• “Fully Programmable Platforms”: Adding
programmable logic to the platform, users can

Session 7.2 3

customize the platform using both HW and SW.
Prominent examples are the Triscend, Altera
Excalibur and Xilinx P-FPGA Platforms combining
dedicated processors and programmable logic.

The platform users vary from users expecting “shrink
wrapped” platforms with complete HW and SW
configurations to users who actually differentiate at all
levels by adding SW routines and even adding in specific
HW blocks tailored for a specific platform.

2.2. Traditional Integration Approaches

Figure 2 indicates the traditional approach of system
integration as it is typically used today. Different parts of
the system are developed using available IP Authoring
techniques, which result in SW or HW implementations.

The integration of all those system blocks is done after the
implementation of the different system blocks in Verilog;
VHDL or C/Assembler code has been done. At this point
in the design process all the essential partitioning
decisions mentioned above have been done already using
ad hoc techniques. Finding at this point, that a module,
which is implemented in SW, really should have been
implemented in HW for performance reasons, can become
a pivotal point in the career of a project manager.

A system on silicon with a processor core, a complete
MPEG-2 AV decoder and integrated memories runs at the
RTL level easily 20- to 24 hours for the decoding of a
PAL frame. This level of abstraction is clearly not suitable
for the verification of audio and video synchronization
effects, which often only happen after hundreds of frames.
Furthermore have at this level implementations already
committed to HW and SW and also the function and
architecture of the design have been mixed. It is for
economic reasons typically not possible to re-implement
modules or even to consider a functional derivative at this
point.

2.3. Design Flows revisited

From figure 2 it also easy to derive requirements for
today’s design flows. It turns out that there is a distinct

difference between IP Authoring and IP Integration, a
difference that has to be addressed by EDA tools.

At first the different IP blocks have to be implemented in
an optimized fashion. In this process of “IP Authoring”
designers would translate embedded system requirements
into an abstract system level model. Abstract, un-timed C
or C++ description techniques as used in SDL or Cadence
SPW will ideally lead to an executable system level
specification.

Figure 3: IP Authoring

These system level descriptions can be used to assess and
analyze the suitability and configuration of algorithms
used in the system context, for example the algorithms
defining the channel decoding or the MAC layer in a cell-
phone.

From this system level description the designer will then
add implementation information which is required to
refine the model from the abstract, un-clocked system
level to the clocked implementation level. Again, Cadence
SPW offers with the HW Design System [HDS]
capabilities to support this design flow for HW. In the
recent past C++ based techniques have been suggested for
HW design as well. Together with implementation level
class libraries they support C++ based design at the

Figure 2: Traditional System Integration

Session 7.2

clocked implementation level. Figure 3 depicts a
generalized IP Authoring design flow for HW and SW.

For SW modules Telelogic TAU and Rational UML/RT
support analogous techniques to derive from a system
level SW description the actual SW implementation,
which then can be directly used in an embedded system.

Assuming a set of SW and HW IP libraries being in
existence for a SOC Integration Platform a second, very
important challenge has to be addressed for today’s SOC
design – IP Integration as indicated in Figure 4.

Again, design teams will start with embedded system
requirement definitions. For SOC Integration Platforms
the platform functionality has to be defined, the notion of
“what” the design does. As SOC Integration Platforms are
typically application specific, they might enable a 2.5G or
3G wireless application, a multimedia design or an
automotive application. Furthermore the platform
architecture will be defined, the notion of “how” the
application can be implemented using architectural
components like busses, memories, processors, dedicated
HW components combined with SW protocol stacks,
application SW and real time operating systems (RTOS).

Figure 4: IP Integration

Function and architecture together define the integrated
system, on which for the integration aspects the system
performance, energy consumption and cost are important
decision factors. A successful co-design tool has to
therefore support the assessment of performance impacts
of different implementation choices for IP prior to the
system implementation. This allows, based on above
mentioned decision criteria, efficient system platform
configuration at the system (pre-implementation) level.

In IP Integration flows design teams also do system
refinement to move the design from the system to the
implementation level. While the IP blocks itself ideally
stay unmodified, refinement now refers to
communication between IP blocks. Both functional
refinement (e.g., refining how a 53 byte ATM cell has to
be transmitted using six 8-byte bursts plus header
transmission) and architectural refinement (e.g. refining
that a HW SW communication is using a interrupt
scheme with shared memory) have to be performed.

Finally HW and SW have to be assembled to allow prior
to SOC tape out implementation level co-verification of
HW and SW. At this level of abstraction design teams will
concentrate on HW/SW interface verification, as
simulation speed does typically not allow complete system
simulation.

Note that co-design has to not only support HW/SW
considerations but also the concurrent design of system
function architecture, including considerations like bus
and memory hierarchies, inter-block communication and
SW-SW trade offs.

Figure 5 depicts a complete design flow for both IP
authoring and implementation. While in traditional design
flows “system integration” mostly only happened at the
implementation level, the complexities of today’s and
future SOC designs require “true” system level integration
a higher levels of abstraction. This is indicated with the
upper arrow integrating abstract system level
specifications.

2.4. Moving to the next level of abstraction

The assessment of alternative design implementations
takes far too long at the implementation verification level
to be efficient enough.

In the past the industry gradually moved up the levels of
abstraction from layout to transistors, from clusters of
transistors to gates and from clusters of gates to RTL. In
all these instances it was always typical to abstract
characterized values from the respective lower level of
abstraction to the next in order to allow predictive
operations. So are gate delays and SDF the mechanisms to
allow synthesis – the evaluation of different
implementation options at that level of abstractions. To
generalize this process it is necessary to characterize both
the performance of the clustered elements and the
performance of the communication between them.

In gradually extending this process to the next level of
abstraction the industry now meets a discontinuity. The
blocks to be clustered are not alone HW modules
anymore. The SW modules have an at least equally
important role at the next level of abstraction –integrated
HW/SW integration platforms.

Figure 5: A connected IP Authoring and IP Integration Flow

Session 7.2 5

The elements to be characterized in this case now are at
least twofold:

• Processing performance of the HW and SW modules.
This is unlikely to be a simple parameter, one number.
Instead this performance will depend on different
states in the HW module and the chosen control path
in a SW module.

• Communication performance between HW and SW
modules. This will include all possible permutations.
Direct interfaces between HW modules characterized
with different performance depending on the chosen
handshake protocol. Interfaces between SW modules
using services provided by real time operating
systems (RTOS). Finally, the different options of
communication between SW and HW and vice versa
need to be characterized. This includes for example
interrupts which trigger SW from HW and protocols
in which to be accessed HW can be programmed.

2.5. Cadence Virtual Component Co-Design

Function-architecture co-design, when linked to platform-
based design, provides a sophisticated high productivity
methodology.

In cooperation with major partners representing the
application domains automotive, wireless and multimedia,
Cadence Design Systems has over the last three years
developed the Virtual Component Co-Design (VCC) tools
through the Felix initiative (see also [3], [4], [6], [7], [8],
[9] and [10]).

The resulting toolset - the VCC Environment - which was
released in January 2000 after a considerable period of
usage by technology partners and early adopters, is an
environment for system level design facilitating function-
architecture co-design, HW/SW co-design and Intellectual
Property (IP) reuse techniques. VCC is enhancing the
traditional design methodologies for IP Authoring
(creation of IP) with a new set of IP Integration
techniques, which allow the efficient design of initial and
derivative products in convergence application fields.

3. The SOC Design Chain

Probably the most significant lesson learned has been the
fact the interaction within the design chain determines the
use-model of system-level tools like Cadence SPW and
VCC.

There are several players involved in exchanging design
data (see also [3]). Classical providers of Star-IP like
ARM and MIPS provide their IP to system houses and
SOC providers. This IP can be both HW, as for example in
the case of processors, and SW as found in protocol stacks
of wireless systems.

System Houses are on the top of the design chain with the
need to articulate the system requirements to their various
suppliers. SOC Providers attempt to match these system
requirements with providing applications specific
platforms based on their silicon and SW supporting the
processor types available in their silicon technology.

Ideally the System Integrator wants to make integration
decisions using a SOC platform provided by a
semiconductor company as early as possible in the design
cycle. Key design decisions that are taken at the system
level include:

• Support for required new standards
• Functional bandwidth, throughput, and latency

requirements
• Communications resource bandwidth and latency,

modeled at abstract and detailed levels of refinement
• Energy consumption and cost
• SW task decomposition, messaging and priorities
• How much of the platform reference design can be re-

used in the derivative-- as-is, or with modifications?
• How much estimated margin is there in a derivative

design to handle unexpected issues during
implementation?

EDA tools must support delivery of models at several
levels of abstraction –from system-level to
implementation.

4. Next Generation SOC Design Kits

Three part engagements have become the norm. Suppliers
of IP and integration platforms interact with their system
customers. Cadence has in these projects taken the role of
a facilitator.

In order to allow efficient interaction within the design
chain the different function and architecture components
of a platform have to be delivered in library structures.

To support the different requirements of System
Integrators each element has to be delivered at the
appropriate levels of abstraction for different phases in the
design process. A couple of examples are outlined in the
next paragraphs.

4.1. HW Modules

The highest level of abstraction for modules, which end up
to be implemented in HW, has to be a pure functional
model, which allows function architecture co-design. This
functional description can be articulated using tools like
Cadence SPW, C++ or any description which can be
wrapped in a OMI (IEEE 1499) interface.

For the actual HW implementation a set of performance
models has to be provided, which allows the assessment,
which specific HW implementation should be chosen.
VCC supports these models through a simple Delay
Scripting Language DSL.

At the implementation level the RTL function should be
made available through OMI for co-simulation and co-
verification.

The most detailed model in the design kit will be the
actual RTL model plus synthesis constraints.

4.2. SW Modules

The highest level of abstraction for modules, which end up
to be implemented in SW, has to be again a pure
functional model, which allows function architecture co-

Session 7.2

design. This functional description can be articulated using
tools like Telelogic TAU for SDL, C++ or any description
which can be wrapped in a OMI (IEEE 1499) interface.

For the actual SW implementation a set of performance
models has to be provided, which allows the assessment,
which specific SW implementation should be chosen.
VCC supports these models through a simple Delay
Scripting Language DSL.

At the implementation level C can be again packed
through OMI and made available for implementation level
verification.

The most detailed model in the design kit can be the
assembler model, potentially even hand-optimized.

4.3. Communication Models

The communication between arbitrary HW and SW
modules has to be modeled for evaluation of performance
impacts using architecture services as provided in the
VCC Environment.

For implementation a synthesizable version of
communication information can be made available which
allows to move functions across HW /SW boundaries and
automatically synthesize the interface afterwards. This
process is called Communication Synthesis in the VCC
environment.

4.4. RISC Processors

To enable SW estimation so called Virtual Processor
Models can be provided, in the VCC Environment, which
provide a characterization of the main instruction classes
and allow the assessment of SW performance prior to
implementation. Design decisions can be made at this
level.

For actual verification ISS models have to be provided,
which allow the object code execution on a processor for
the purpose of functional verification and HW/SW Co-
Verification

4.5. DSPs

To reflect the performance of tasks, which the DSP has
been optimized for, the performance characterization as
provided today in data books can be used in the VCC
Environment in an executable fashion.

For actual verification ISS again models have to be
provided, which allow the object code execution on a
processor for the purpose of functional verification and
HW/SW Co-Verification

4.6. Busses

For the actual performance evaluation the delay and
arbitration of the bus can be characterized in the VCC
Environment.

At the implementation level the detailed bus interface
logic has to be available fully articulated.

4.7. Memories

For performance evaluation the memory access times and
the information about burst modes etc. has to be provided.

At the implementation level detailed, typically C based
models, which check set up and hold times and reflect the
actual memory allocation accurately.

4.8. Real Time Operating Systems (RTOS)

At the performance evaluation level a RTOS has to reflect
the access to the processor (arbitration policy) plus the
performance impact of context switching, e.g. start, stop,
suspend and resume times. Furthermore the number of
interrupts and RTOS services like timer and semaphores
need to be available for evaluation. At the implementation
Co-Verification level the object code of the RTOS can be
booted on an ISS.

5. IP Authoring Use Models

The Cadence Signal Processing Work system (SPW)
provides an efficient IP authoring infrastructure for digital
signal processing algorithms.

Initially researchers get started to explore new worlds, like
we can see in the wireless communication space right now
with its 4th generation, where datarates up to 100Mb and
frequencies up to 66GHz are targeted. Ideas shape,
standards start creating a marketplace and companies
starting development. The products need to comply with
the standards set before, differentiate by features to gain
market acceptance and use resources efficiently to keep
proper margins.

5.1. Research Phase

Scientists play with their ideas, on whiteboards, papers
and create computer models to prove their ideas would
work against a certain physical environment. They would
use Cadence SPW to actually experiment with their
preferred algorithms, analyze the results with SigCalc and
plot and document their findings in papers they use at the
next conference. Feedback goes into the refinement of the
models, where ease of use, flexible-authoring paradigms
likes to capture control, dataflow and time continuous
domains is of essence. Experiments are mostly done in the
floating domain; implementation is not a concern at all
yet.

5.2. Top Down Product Development

New applications get visible, and industry predicts good
business using the new standard. Development teams start
working building reference models, introducing real
channel effects and capture the performance data of a
system, which should resemble the standard. The teams
are building executable specifications, and bring on their
own ideas for algorithms to address specific problems.

Cadence SPW is widely used in the communications and
multimedia industry to capture those simulation models, in
fact, Cadence and partners like NIST [22] do actually also
provide those models. Cadence follows changes in the
standards immediately and delivers the enhanced models

Session 7.2 7

to their respective customers ASAP, giving with this fast
turnaround their customers the ability to concentrate on
features they want use to differentiate. Getting a reference
library gives a huge productivity boost and makes it easy
for design teams to deliver on time [23].

5.3. Product Development Applying Reuse

Graphical, hierarchical parametrizable models written in
C, C++, SystemC, UML or behavioral analog languages
allow for the best modeling styles selected for the task in
mind. In fact, if you have implemented a design piece in a
previous project already for HW, would you voluntarily
recode that block in C so it can be simulated together with
other newly created models? Simulators are required
which can execute various simulation domains together
without giving a performance hit to the user.

 They need to support standard interfaces like OMI [24]
and should allow a free mix of
C/C++/SystemC/VHDL/Verilog/VerilogA as the Cadence
SPW/NC-Sim environment [25] does. Reuse of previously
generated HW blocks would not be a problem, and also
the RF design team and the Baseband engineers can easily
explore the performance of their end to end system before
they integrate the first prototype in the labs.

As the next step engineers now need to decide, which
platform can deliver the right performance to realize the
desired functionality.

6. IP Integration Use Models

The tool framework provided to users with the VCC
environment has been designed in an open fashion and
allows users to follow several types of use models.

6.1. General Top Down Design Exploration

Like the algorithmic exploration in IP Authoring
techniques there is a lot of value in the exploration how
systems connect and behave on different target
architecture options. Ericsson reports in [11] their
experience with HW/SW Co-Design and re-emphasizes
the importance of separation of function and architecture.
This enables much easier modification of designs at the
system level and easier reuse of behavior and architecture
virtual components. The ability to make ‘what-if’ kinds of
changes in architectures and mappings is important to
build understanding of the system under design. BMW
reported at various occasions including [21] about their
design space exploration efforts using VCC.

6.2. Top Down Platform Exploration

During the actual development of the platform trade of
decisions have to be made. A system house will define a
platform in which the architectural components are not yet
bound to real implementations. This way trade offs
between bus systems, memory hierarchies etc. can be
analyzed and fed back to the development.

In contrast a semiconductor house will define a platform
depending on the availability of architecture components
in their portfolio. This use model is applied during the

development of an actual platform. The challenging part
here is to define the range of application variants in an
appropriate way. This range then directly translates into
the amount of scalability within a platform.

6.3. Bottom Up Platform Characterization

Once a platform definition exists the different components
can be characterized to reflect the implementation issues.
Busses, RTOSs, processors etc. build the characterized
components of a platform, which can be used by system
houses as a target to map application variants to. ST
Microelectronics reported in [18] about efforts to provide
and characterize architectural components for
consumption by internal and external customers. Philips
reported in [12], [13] and [14] about efforts to characterize
parts of a multimedia platform with a strong focus on the
communication design.

6.4. Configuration of Characterized Platform

Having received a characterized platform the system house
can map application derivatives to the platform and
explore different alternatives. Magneti Marelli reports in
[15] about their interaction with IP and architectural
component providers. Motorola describes in [20] a similar
use model. The platform has here not been formerly
characterized except through the system-level design team.
The BWRC also followed similar flows according to [17]
during wireless protocol design. Thomson CSF (now
Thales) describes in [16] how characterization of IP
components worked and how they verified the
characterization appropriately.

As a common thread in this use model the configuration of
the platform is moved up to the system-level, at which
simulation times are more appropriate for design space
exploration and trade off analysis.

6.5. System-level Functional Verification

As an additional use model customers are adopting
functional verification approaches at the system-level. By
definition a platform comes with some standard supported
functionality. Once a platform consumer has created a
derivative the scenarios, which were originally supported,
have to be re-confirmed.

6.6. Platform Assembly for Co-Verification

The VCC Environment allows the design export feeding
Co-Verification environments like Yokogawa VirtualICE
and Mentor Seamless. The assembly process in itself –
refining the architectural platform to the state at which
top-level netlists and the associated SW can be exported –
provides value as a front-end process to Co-Verification,
in which the set up of the environment often is a
cumbersome task.

7. Conclusion

Several use models for IP Authoring and IP Integration
have been described based on the Cadence VCC and SPW
solutions. The Cadence SPW toolset supports in version

Session 7.2

4.7 the above mentioned use models and IP authoring
flows.

The Cadence VCC Environment supports in VCC 2.1 as
of May 2001 the above shown techniques and is used by
System Integrators and SOC providers to optimize their
interaction in the SOC Design Chain.

8. References

[1] G. Martin, et al.,, “Surviving the SoC Revolution: a
Guide to Platform-Based Design”, Kluwer Academic
Press

[2] A. Ferrari and A. Sangiovanni-Vincentelli, System
Design: Traditional Concepts and New Paradigms,
Proceedings of the 1999 Int. Conf. On Comp. Des., Austin,
Oct. 1999

[3] F. Schirrmeister, S. Krolikoski, “Virtual Component
Co-Design – Facilitating a Win-Win Relationship between
IP Integrators and IP Providers”; IP Conference,
November 1999, Edinburgh

[4] F. Schirrmeister, S. Krolikoski, “Bridging System
Level HW/SW-Co-Design to HW/SW Implementation”, IP
Conference, March 2000, Santa Clara

[5] F. Balarin, et al., “HW-SW Co-Design of Embedded
Systems”, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1997

[6] G. Martin and Sanjay Chakravarty, “A New
Embedded System Design Flow based on IP Integration”,
DATE99, User Forum

[7] G. Martin and B. Salefski, “Methodology and
Technology for Design of Communications and
Multimedia Products via System-Level IP Integration”,
DATE98

[8] S. Chakravarty, “IP Modeling for a GSM Handset in
the VCC Design Environment”, DATE99, User Forum

 [9] Sanjay Chakravarty, Stan Krolikoski, Grant Martin,
“DSP SW Estimation using characterized kernel
functions”, DSP Deutschland, September 1999.

 [10] Mark Baker and Eamonn O'Brien-Strain, “Co-
Design Made Real: Generating and Verifying Complete
System HW and SW Implementations”, Embedded Systems
Conference, San Jose, CA; September 1999; Paper #520

[11] Jonas Plantin, Erik Stoy, “Aspects on System Level
Design”, Proceedings of the 7th. International Workshop
on HW/SW Codesign (CODES-99), Rome, May 3-5, 1999,
pp. 209-210.

[12] J.-Y. Brunel, et al.,, “Communication Refinement in
Video Systems on Chip”, Proceedings of the 7th.
International Workshop on HW/SW Codesign (CODES-
99), Rome, May 3-5, 1999, pp. 142-146.

[13] H.J.H.N. Kenter, et al.,, “Designing Digital Video
Systems: Modeling and Scheduling”, Proceedings of the
7th. International Workshop on HW/SW Codesign
(CODES-99), Rome, May 3-5, 1999, pp. 64-68.

[14] “Philips Semiconductors: The COSY Initiative”,

available on the Cadence public web site at URL:
http://www.cadence.com/success_stories/philips_semi_r32
3.html

[15] “Magneti-Marelli: Cierto Virtual Component
Codesign (VCC) environment for engine control unit
design”, available on the Cadence public web site at URL:
http://www.cadence.com/success_stories/magneti_marelli
_r315.html

[16] “Thomson-CSF: Cierto VCC for system-level design
of telecommunications and smart card SOCs”, available
on the Cadence public web site at URL:
http://www.cadence.com/success_stories/suc_pdf/thomson
_csf_r310.pdf

[17] J. Ammer and J. da Silva, Jr., et. al. “Design Flow
for Wireless Protocols”, BWRC presentation, January
2000, downloadable from the BWRC web site at URL:
http://bwrc.eecs.berkeley.edu/Research/Two%20Chip%20
Intercom/BWRC_01_2000.ppt

[18] Grant Martin, Bill Salefski, ” System Level Design
for SOC’s: A Progress Report, Two Years On”,
Proceedings of HDLCon 2000, San Jose

[19] Benoit Clement, ST Microelectronics, DAC Cadence
Customer Success Theatre, “VCC based design flow for a
ST 100 Platform“

[20] Andreas Kanstein, Motorola, DAC Cadence
Customer Success Theatre, “Evaluation of a GSM
Handset Baseband Architecture using VCC”

[21] Peter Schiele, BMW, DAC Cadence Customer
Success Theatre, “Automotive Applications and VCC in
their design flow”

[22] National Institute of Standards and Technology
(NIST), the CDMA2000 models for Cadence SPW can be
downloaded from
http://w3.antd.nist.gov/wctg/3G/cdma2000.html

[23] Walter Kurtsiefer, Motorola Date 2001 Cadence
User Group, “Using Cadence Libraries for Wireless
Infrastructure Real-Time SW Design”

[24] OMI IEEE1499

[25] Intellon Inc., “SPW-NC Direct Co-Simulation for
speeding up complex IC design and verification”

