
Policy-Based RTL Design

Bhanu Kapoor and Bernard Murphy
bkapoor@atrenta.com

Atrenta, Inc., 2001 Gateway Pl. 440W San Jose, CA 95110

Abstract

The design decisions, made early in the design process,
effect the entire chip design process. To manage this
effectively, the RTL design process must be reliable in a
way that the tools carrying out stepwise refinement of the
RTL code towards the final layout become predictable in
achieving the desired goals. We present a new
methodology to accelerate the design of complex ASICs
and SoCs through predictive analysis and policy-based
RTL code development. The goals of policy-based RTL
design, as outlined in this paper, include creation of a
system that addresses RTL design using policies and
guides the design process efficiently towards design goals
under given design constraints.

1 Introduction

Silicon technology now allows us to build chips
consisting of tens of millions of transistors. While this
technology promises new levels of system integration
onto a single chip, it also presents significant challenges
in terms of figuring out a design methodology for
effective use of available transistors on a single chip.
There is a common set of problems facing everyone
involved in large-scale designs:

o Time-to-market pressures demand rapid product
development cycle

o Quality of results, in performance, area,
testability, and power, are key to market success

o Increasing chip complexity makes design
verification complexity grow at a much faster
rate

o Deep sub-micron issues make timing closure
more difficult

o Development team with different levels of
expertise, multiple design teams, often extended
geographies with different design cultures

o Lack of the ability to reuse work from previous
similar design projects

o Being able to plan and execute a predictable
project schedule

Each of the point-solution CAD tools has been effective
in solving a particular area of problem. For example,
recent productivity gains in a designer’s ability to
generate gates have stemmed form the advances and

widespread acceptance of synthesis technology into
today’s design flows. In fact, design productivity has
risen tenfold since the 1980s in terms of number of gates
designed per day but such a claim cannot be made
towards the ability to verify these designs. The goal of
taking an RTL description of a large design and
effectively using it for various goals towards the
completion of the design has remained a challenge. As a
result, we follow the step-by-step refinement process and
encounter problems in later stages of the design cycle that
require large resources and more than offset any gains
made by the individual tools.

The net effect of these issues shows up in inefficient
project planning and schedule development. Some of the
large commitments for the project are made early in the
design cycle when the design knowledge is at a minimal
level as shown in Figure 1. This eventually shows up in
schedule slips and budget overruns.

The design decisions, made early in the design process,
effect the entire chip design process. To manage this
effectively, the RTL design process must be reliable in a
way that the tools carrying out stepwise refinement of the
RTL code towards the final layout become predictable in
achieving the desired goals.

The ability to address potential timing, power, testability,
and size issues early in the design cycle is critical to
achieving high productivity in the design process. The
ability to address these issues during the RTL code
development not only results in more optimised designs
but also helps improve efficiency of other tools being
used in the design process. In addition, there is a lot to be
gained from having a truly golden RTL code for the
design not only in the current design but also in the future
generation designs and systems.

We present a new methodology to accelerate the design
of complex ASICs and SoCs through predictive analysis
and policy-based RTL code development. This approach
performs detailed structural analysis on RTL in order to
check coding styles, RTL-handoff, design re-use,
clock/reset requirements, verification, timing, design for
testability, low-power guidelines and much more. It
requires a "look-ahead" engine that is based on fast-
synthesis technology and a fast in-built cycle-based
simulator to carry out such analysis during the RTL code
development process.

The goals of policy-based RTL design, outlined in this
paper, include creation of a system that addresses RTL
design using policies which guide the design process
efficiently towards design goals under given design
constraints. Specifically, the system performs many
functions including:

o Policy Application
o Policy Creation
o Policy analysis and report

The rest of the paper is organized as follows: Section 2
describes the basic model for policy-based RTL design,
elements of policy enforcing engine, and the policy
management process. Several examples of policies are
described in section 3. We then conclude the paper with a
summary and a list of references.

Figure 1: Challenges in Product Development

2 Model for Policy Management

What is needed is a comprehensive, policy-based system
that will allow designer to define, in a succinct and
organized fashion, design policies that automatically
point out time consuming downstream issues during the
RTL code development process. The end result is that
time-to-market goals are met and predictable schedules
become a reality.

Basic elements constituting policy-based RTL design are
as follows:

2.1 Policy

A policy is a collection of rules for specific purpose such
as rules associated with certain standard or certain design
tool. Policies extend user extensibility, allowing you to
develop and manage you customized groupings of rules

more easily. The design methodology includes a set of
policies that can be selected by the designer during the
process of RTL code development. Examples of such
policies are as follows:

o Lint
o Reuse
o Verification
o Area
o Timing
o Testability
o Power
o Clocks and Resets
o Vendor tools

2.2 Rule Groups

A collection of rule is termed as a group. Typically,
groups consist of rules addressing a particular area of
interest in the RTL code. Groups are hierarchical: that is,
a group can contain other lower-level rule groups as well
as individual rules. A group provides additional level of
modularity in applying policies to a given RTL design.

Figure 2: Rule and Group Selection

2.3 Rules

A rule is the most fundamental element in the policy-
based management system. It describes a set of
conditions when triggered by the policy engine result in
an indication of a specific issue with the RTL code.
These rules allow standard analysis of the RTL code. A

Design Life Cycle

Design Commitment

Knowledge Gap

Avaiable Design Infomation

simple simple of a rule could be: There should be no
stranded states in the FSMs described in the RTL code.
Figure 2 shows an example of group and rule selection
during the policy-based RTL design process.

The result of applying policies to an RTL design is s set
of rule violations with different severity levels, cross-
linking of these violations with RTL code and schematic,
and a process of suggested corrections and/or automated
correction of the issue in the RTL code. Each policy can
be tailored for application with a list of parameters.
Figure 3 shows an example for the timing policy that
includes parameters such as levels of logic, fanout, and
the allowed size for multiplexers.

Policy management involves the selection of rules,
groups, and policies, application of policy parameters,
creation of new rules and policies, and policy analysis
and report generation.

Figure 3: Parameters defining a timing policy

2.4 Policy Engine

Policy enforcement is enabled through an engine
consisting of fast synthesis, fast cycle-based simulation,
and a fast design database traversal working at a higher-
level of abstraction.

Policy engine accelerates electronic product development
by enabling development teams to capture, aggregate,
distribute and apply constraints and requirements early in
the development cycle. The fast synthesis engine
internally creates the design structure and foresees
downstream issues early in the development cycle,
thereby eliminating errors at the earliest possible stage.
Such an engine ensures that designs are always compliant
with value chain constraints by identifying, advising and

correcting violations as the design progresses towards
completion. The engine preserves the correlation of RTL
to the fast-synthesis netlist so that any errors detected
there can be traced back to the origin for quick problem
identification and correction.

The evaluator in the Policy engine is effectively a zero-
delay cycle-based simulator used to resolve functional
design constraints as well as carry-out simulation
required to set up the design for testability analysis.

Policy creation requires a traversal engine that works on
the RTL netlist resulting from fast synthesis and provides
user with basic primitives to implement rules requiring
traversal of the design. The connectivity information
coupled with traversal primitive allow for creation of
rules that look for violations across the design hierarchy.

3 Policy Examples

The design decisions, made early in the design process,
effect the entire chip design process. To manage this
effectively, the RTL design process must be reliable in a
way that the tools carrying out stepwise refinement of the
RTL code towards the final layout become predictable in
achieving the desired goals. A detailed structural analysis
on RTL in order to check coding styles, RTL-handoff,
design re-use, clock/reset requirements, verification,
timing, design for testability, and low-power guidelines
can be applied during the RTL design process to
highlight issues which will remain after detailed synthesis
and refinement are carried out by other tools. Figure 4
shows a set of policies that can be applied during RTL
development.

3.1 Lint and Reuse

Many of the techniques for design reuse are just good
design techniques such as good documentation,
structured code, thorough commenting, and properly
organized code. These are captured in approximately 200
rules in the lint policy. Lint provides a powerful method
for checking the RTL for violations of coding guidelines
and other kinds of coding errors not reported by the RTL
compilers. This policy is typically used throughout the
RTL design process since it is the fastest means of
catching the most basic issues with the RTL code. Some
of typical lint issues encountered during the course of
RTL code development include issues such as:

o Not all cases are covered in a case statement.
o Variable specified in the in the sensitivity list

but not contained in the block of code.
o Multiply driven net during the same clock cycle

Figure 4: Example of policies in Policy-based RTL
Design

The design for reuse [1] philosophy implies RTL code
development that is designed to solve a general problem,
for use in multiple technologies, targeted for efficient use
of simulators and synthesis tools, and follows
recommended design practices. The OpenMORE [5]
policy with approximately 150 rules and guidelines that
address issues associated with the reuse of soft IP cores
and 90 rules and guidelines of hard IP. Another policy for
reuse is defined by the Japanese Semiconductor
Technology Academic Research Center (STARC) [4]
initiative. All design projects have the basic underlying
goal to develop RTL code that is simple and regular.
Simple and regular RTL structures are easier to design,
support, verify, synthesize, and reuse as compared to the
code developed in the projects that do not follow design
guidelines. A typical design project should provide the
engineers with a set of guidelines that are likely to
streamline synthesis and other implementation issues
down the road. Some typical guidelines used in projects
include practices such as:

o Use “case” statements instead of “if else” for
performance

o Combinational loops are not allowed
o No stranded states in the finite state machines
o Blocking assignments in the sequential blocks

must be avoided

o Separate the combinational and sequential parts
in the FSM

o Use define macro to code the states of an FSM;
no hard coded states

3.2 Verification

Enabling RTL code that follows a verifiable style serves
both for the success of EDA tools as well as enhances the
productivity of less experienced engineers who
participate in the design and verification process. The
verification policy address verification from several
angles including coding for verifiable RTL, coding for
functional and code coverage, coding for verification
reuse, coding for simulation, and coding for formal
verification success. Some of issues such a policy can
help with are:

o Synchronous and Asynchronous race conditions
at time zero during simulation

o Avoid blocking assignments in sequential code
inferring flops

o Avoid multiple drivers to clock, data, and reset
inputs of sequential devices

3.3 Area and Timing

An early estimate during the RTL code development on
the size and performance issues of the design can
potentially save significant design time in the later stages
of the design cycle. Using the area policy, one can get the
partition size information and the timing policy looks into
issues such as large fanout nodes and the number of
levels of logic in the design to give designers an early
estimate for potential issues down the road.

Once the RTL code is clean with respect to lint issues,
initial simulation has been carried out, and project
guidelines have been met, an estimate of total area of the
design as well as the distribution of area for different
units in the design can be a valuable data early in the
design process. For designs in the networking arena,
some estimate of amounts of memory being used in
different sub-systems can be equally valuable in design
planning.

The timing policy looks into issues such as large fanout
nodes and the number of levels of logic in the design to
give designers an early estimate for potential issues down
the road. Large fanout nodes may indicate the need for
duplication of registers to achieve higher performance.
The levels of logic can point out areas where retiming
across registers can help improve performance of the
design. The policy consists of parameters to allow users
to customize feedback utilizing their experience from the
past designs.

RTL Code Area Power

 DFT

 Timing

 Reuse

Vendor
Policies

Clocks

Verification

3.4 Clocks

It is important to identify the clocks and resets in the
design as well as the clock-tree network early in the code
development process. A policy devoted to dealing with
many challenges presented by the clocks and resets in the
design. It is important to identify the clocks and resets in
the design as well as the clock-tree network early in the
code development process. Many designs, especially the
ones in the networking domain, typically use multiple
clocks domains that present us with challenging issues in
integration and verification of such systems. Signals
originate in one clock domain, but they may be used in
other clock domains. Correct operation of a chip can only
be ensured if rules governing correct use of signals across
asynchronous clock boundaries are followed. The clocks
policy identifies signal paths that cross clock domains,
analyzes whether paths conform to selected
synchronization rules, and ensures whether gated clocks
are derived according to specified rules. It recognizes
clocks by looking for flops, then finding the signal
attached to the clock input. For Verilog, this means
finding a signal used as an edge-trigger to an “always”
block and not used as an asynchronous reset within that
block.

3.5 Power

With the ongoing fusion of rapidly emerging
technologies such as personal communications, portable
computing, and high bandwidth communications, the
need for low power digital and analog designs [3] is ever
increasing. The opportunities for achieving low power
design exist at various levels during the product
development process. These levels can be identified as:
1) technology 2) layout 3) transistor-level circuit 4) gate-
level circuit 5) architecture and system, and 6)
algorithms. A power policy addresses the gate and
architecture level issues using the RTL code. Some of
issues being addressed focus on adhering to low power
design guidelines such as:

o All banks of memory controlled by enabled
logic cone

o All buses driven by tri-state drivers
o Check for one-hot coded state machines
o Use of gated clocks to selectively turn on/off

various units

3.6 Testability

To get the design ready for testability, the testability
policy has rules which address topology related issues as
well as functionally dependent issues. The topology
related rules depend only on part type, pins, and
interconnections and functionally dependent rules involve
test mode, test clock pins, parameters and circuit reset

checks. This category includes rules such as
combinational feedback detection and port-to-port path
connection.

o Nodes in the design should be observable
o No gated clocks
o Report multiple clock domains
o No switching on both edges of the clock
o Potential race conditions

In addition, policies that make other CAD tools more
efficient are equally important for the goals of policy-
based designs. Some of our policies can significantly
enhance user productivity when using products such as
simulators and timing closure tools. A policy can be
equally applicable to lower-level netlists and can include
common rules checked prior to the physical design hand-
off.

4 Summary

We have described a design methodology based on
policy-based RTL design. The elements of policy-based
RTL design have been outlined. This approach performs
detailed structural analysis on RTL in order to check
coding styles, RTL-handoff, design re-use, clock/reset
requirements, verification, timing, design for testability,
low-power guidelines and much more. The end result is
that time-to-market goals are met and predictable
schedules become a reality.

5 References

[1] M. Keating and P. Bricaud, “Reuse
Methodology Manual: For System-on-a-Chip Designs”,
Kluwer Academic Publishers, 2001.
 [2] L. Bening and H. Foster, “Principles of
Verifiable RTL: A functional coding style supporting
verification processes in Verilog”, Kluwer Academic
Publishers, 2001.
 [3] A. P. Chandrakasan, S. Sheng, and R. W.
Brodersen, “Low Power CMOS Digial Design”, IEEE
Journal of Solid State Circuits, pp. 473-484, April 1992.
 [4] Semiconductor Technology Academic Research
Center, “STARC open Design Style Guide”,
www.starc.or.jp/.
 [5] OpenMORE, “The Industry Reference for IP
Measure of Reuse Excellence” www.openmore.com/

