
Platform-Based Co-Design and Co-development:
Experience, Methodology and Trends

Grant Martin

Cadence Design Systems
2001 Addison Street, Third Floor
Berkeley, California 94704 U.S.A.

+1-510-647-2804

gmartin@cadence.com

Jean-Yves Brunel
Cadence Design Systems
18 rue Grange Dame Rose

78148 Velizy, France
+33-1-34-88-5386

brunel@cadence.com

ABSTRACT

In this paper we focus on platform-based design of complex
SoC products and the methodologies involved in both creating
platforms and using them to design derivatives. In particular,
we concentrate on the co-development of software and
hardware: including co-design and co-verification stages.
After defining the methodologies and describing their key
steps, we summarise specific industrial experience, and draw
conclusions about the future evolution of these methodologies.
This includes some key ideas about the future of co-design as
seen by embedded SW developers.

1. INTRODUCTION
The co-development of complex embedded HW-SW products
involves the relatively new steps of co-design and co-verification.
These methods have been talked about for a number of years but
have not been central to the design of many systems up until now.
Indeed, system-level design and associated methodologies have
hardly taken off. However, the growing importance of platform-
based design places new emphasis on the key technologies of
HW-SW co-development. We start first by coming up with a
simple definition of platform-based design.

2. PLATFORM-BASED DESIGN
Platform-based design of complex products including embedded
system-on-chip (SoCs) has been discussed frequently in recent
years [1,2]. It is defined in various ways, but one source of good
definitions (as of February 2002) comes from the VSIA Platform-
Based Design Study Group. It defines a platform as “a library of
virtual components and an architectural framework consisting of a
set of integrated and pre-qualified software and hardware IP
blocks, models, EDA and software tools, libraries and
methodology to support rapid product development through
architectural exploration, integration and verification.”
Platform-based design is then defined as: “An integration-
oriented design approach emphasizing systematic reuse, for
developing complex products based upon platforms, intended to
reduce development risks, costs and time to market. Within the
VSIA the scope of the platform is bounded to the SoC.” [3]

This design approach has implications for the design methodology
and type of system-level design tools used to support it. In
particular, we note that since we are talking about complex
embedded systems, with substantial software content, the issues of
co-design and co-verification, in which both hardware and

software considerations are important, must be a major part of the
methodology.

3. METHODOLOGIES
In platform-based design, we need to distinguish clearly between
the process of platform development, and the process of specific
product development using the platform. The latter is commonly
referred to as ‘derivative design’. The key tasks involved in
creating the platform, and in using it, may be superficially similar,
but differ substantially in details. The implications for co-design
and co-verification are important. Figure 1 illustrates the key co-
development methods overall, that would be used in designing a
product in one pass from start to finish.

Application
Modelling

Application
Modelling

Architecture
Modelling

Architecture
Modelling

Design Space
Exploration

Design Space
Exploration

Links to
Implementation

Links to
Implementation

Co-VerificationCo-Verification

Application
Modelling

Application
Modelling

Architecture
Modelling

Architecture
Modelling

Design Space
Exploration

Design Space
Exploration

Links to
Implementation

Links to
Implementation

Co-VerificationCo-Verification

Figure 1: Key Co-Development Methods

The general tasks include modelling applications and platform
architectures, design space exploration, links to implementation,
and co-verification. These are described in more detail as part of
platform development and derivative design in the next sections.

The general approach used is that of ‘function-architecture co-
design’.

3.1 Platform Development Methodology
In platform development, co-design is most significant. That is,
the issue of partitioning and mapping system functionality into
portions that will be implemented as software running on
embedded processors vs. direct hardware implementations
assumes fundamental importance. Note that in addition, the
communications between architectural components implied by
these partitioning and mapping decisions is also of key
importance. The idea of ‘software-software’ co-design, where
most functions are implemented in software on a platform with
multiple embedded processors, makes the issue of which task
maps to which processor, and the inter-processor communications
requirements entailed by this choice, of growing importance. To
support co-design and this partitioning, design space exploration
is the key task.

Platform
Family

Requirements

Platform
Family

Requirements

Platform
Architecture

Concept

Platform
Architecture

Concept

Design Space
Exploration

Design Space
Exploration

Platform
Implementation

Platform
Implementation

Generate
Platform
Libraries

Generate
Platform
Libraries

Target
Application

Models

Target
Application

Models

Platform
Family

Requirements

Platform
Family

Requirements

Platform
Architecture

Concept

Platform
Architecture

Concept

Design Space
Exploration

Design Space
Exploration

Platform
Implementation

Platform
Implementation

Generate
Platform
Libraries

Generate
Platform
Libraries

Target
Application

Models

Target
Application

Models

Figure 2: Platform Development Methodology

In Figure 2, we show the key tasks involved in platform
development. These include:

• Gathering platform family requirements: determining
the common requirements for the intended application
domain and family of applications that will form the
underpinning of platform decision-making. This
includes identification of current and possible future
standards, which the platform will support.

• Developing or re-using target application models: these
may come from standards bodies, and a variety of
internal and external sources.

• Developing a platform architecture concept: this
includes selection of candidate processing and on-chip
communications IP blocks, hardware blocks, RTOSs as
appropriate, and other hardware-dependent software, as
well as middleware and target-domain application
software. The concept may include multiple
architectures and candidate IP blocks.

• Design Space Exploration (DSE): mapping the
application models to the candidate architectures and IP
blocks to determine the fit of the applications to the
architecture, the remaining design margin, the
sensitivity of the architecture-application combinations
and to answer key design questions. This involves a
variety of simulation-based and analytical approaches
for performance, power, and cost.

• Platform Implementation: once a candidate architecture
and IP libraries are chosen, implement the platform to
the design hand-off level chosen by the design team and
company business model, which will be the starting
point of derivative design. This could be at RTL,
layout, or indeed full-chip level for a reconfigurable
platform.

• Generation of Platform Libraries: generate the design
artefacts, which will be the starting point for derivative
design and rigorously store them into well-organised
libraries.

The key step here is that of Design Space Exploration. This will
be discussed in more detail later, with a multimedia example.

3.2 Derivative Design Methodology
In derivative design, co-verification is the key design step.
Derivative design emphasises the rapid assembly of a product-
specific design using the platform via detailed configuration, and
verification that the derivative product will fit on the platform and
that the components and the platform architecture chosen will
meet design requirements. Co-verification is a key task for
ensuring this.

Specific
Derivative

Requirements

Specific
Derivative

Requirements

Reference
Platform
Library

Reference
Platform
Library

Configuration
& Assembly

Configuration
& Assembly

Co-VerificationCo-Verification

Final
Implementation

Final
Implementation

Specific
Derivative

Requirements

Specific
Derivative

Requirements

Reference
Platform
Library

Reference
Platform
Library

Configuration
& Assembly

Configuration
& Assembly

Co-VerificationCo-Verification

Final
Implementation

Final
Implementation

Figure 3: Derivative Design Methodology

In Figure 3, we show the key steps involved in derivative design.
These include:

• Gather the requirements for the specific derivative
product and ensure that the chosen platform ‘field of
use’ is appropriate.

• Draw on the reference platform library for basic
architecture and choice of pre-validated and
characterised virtual components (HW and SW), which
are required for the specific product derivative.

• Configure the platform and assemble the selected
virtual components into it.

• Verify the resulting derivative product design. Since
any significant platform involves embedded
processor(s), and SW components – at least Hardware-
dependent Software (HdS) such as the real-time
operating system (RTOS), and device drivers – the
derivative design will involve significant software at
both HdS and application levels as well as appropriate
middleware. Thus some amount of HW-SW co-
verification will be required. For platforms that are
mainly software-programmable, this may be an almost
pure validation of the software’s ‘fit’ onto the platform,
both for computing and communications resources.
Such co-verification could include both SW-based
simulation and a variety of emulation and rapid
prototyping methods.

• After co-verification has proven the derivative design
will work, there is a final implementation stage. This
may be a significant IC design experience (for
platforms defined at the mostly RTL level, for example)
or a small one (for ‘hard’ layout platforms with little
hardware variability), to almost none at all (for a
reconfigurable logic-based platform with embedded
processors – a “highly programmable platform” or what
has been called a “platform FPGA”). Thus the time
and effort required for final implementation, fabrication
and prototype testing will vary widely, depending on
the implementation style.

Co-verification will be discussed in more detail later with an
automotive example.

4. INDUSTRIAL EXPERIENCE
We first discuss the state of design tools for various steps of the
co-development process, and then discuss some specific industrial
experience in automotive and multimedia application areas.

4.1 The State of the Design Tools
Co-design and co-development tools have emerged in the last
several years, although none of the current crop of tools has taken
off into widespread commercial use. This is part and parcel of
the problems with the adoption of system-level design tools
within the industry. Notwithstanding the relative lack of
adoption, it is indeed possible to construct a credible platform-
based co-development flow using commercial tools, albeit with a
significant amount of flow engineering and model development.
Many design groups continue to rely on internal tool
developments and ad-hoc methods for system design.

In co-design, notable commercial tools include VCC from
Cadence, Archimate and Cosimate from Arexys (now TNI-
Valiosys), Foresight from Foresight Systems (was Nuthena) and,
to a more limited extent, N2C from CoWare. In co-verification,

key commercial tools include Seamless from Mentor (having the
lions share of the commercial market), N2C from CoWare, and, to
a more limited extent, Eaglei from Synopsys (widely rumoured to
be no longer under development) and V-CPU from Innoveda.
SW-based co-simulation suffers from the significant effort
required to acquire or develop Instruction Set Simulation models
that integrate effectively with HDL simulation. This has led to
two other approaches for co-verification: first, the creation of
‘Virtual Prototyping’ environments at the system-level using high
level models of both processors and HW peripherals; and second,
the use of HW-based rapid prototyping or emulation systems.
Prominent examples for the first approach include Virtio, Axys,
and VAST. The second approach has been advocated by
traditional emulation approaches such as Quickturn, IKOS, and
Mentor Celaro; and other architectures such as Aptix, Axis,
Tharas, and Simpod.

Before system-level co-development tools become more popular
commercially, certain requirements for commonly-adopted and
widely-accepted modelling infrastructure must be met. Among
these are be the widespread use of a common system level design
language such as SystemC so that models have a much higher
likelihood of true interoperability across various proprietary and
internal tools.

4.2 Automotive Industry
Cadence has carried out significant work in adapting co-design
technology (VCC) to the automotive industry, notably in
partnership with BMW [4,5]. In this approach, the underlying
system platform architecture is that of a network of electronic
control units (ECUs) interconnected by a system bus
implementing one of a variety of automotive communications
protocols such as CAN, TTP, ByteFlyte, or FlexRay. Each ECU
consists of an embedded microcontroller and associated memory;
these are usually discrete units, not integrated into an SoC, and
the system bus is discrete wiring. However, the principles of co-
design and co-verification are similar no matter whether the
integration is into one SoC or a more distributed embedded
system.

The primary co-design task in this design is actually what we call
‘software-software co-design’. This is targeted at designing
specific automotive derivative products, as the basic platform is
well known. The distributed network of ECUs is the delivery
vehicle for a number of different functions implemented as
software tasks running on the ECUs. These software tasks, in
the VCC flow for BMW, are created using the ETAS ASCET
tool, which models software as finite state machines. The ASCET
flow generates executable code for the set of tasks that are to be
mapped to the ECUs. The key co-design questions, which need
to be answered, are:

• How many ECUs are required to adequately execute the
tasks and yet leave sufficient margin for future software
running on the network and for modifications required
to the existing functions?

• How are the ECUs to be configured? Memory
requirements are especially important as the automotive
domain exhibits severe cost-sensitivity.

• Is the communications network adequate for the inter-
task and inter-ECU communications (message and data
passing) implied by the application tasks and their
mapping and distribution on the ECUs? This is in

terms of bandwidth, latency, redundancy, and safety
considerations. Tasks running on the same ECU may
communicate via shared-memory message passing; tasks
on different ECUs need to use the system bus.

To provide communications model flexibility for existing and
future standards, without imposing an extraordinary modelling
effort, Cadence and BMW have worked to create a Universal
Communications Model (UCM), which can be used to model
several different protocols. This will also allow virtual
prototyping of future communications protocols without requiring
their detailed implementation to carry out co-design studies and
tradeoffs.

Although SW estimation methods can be used in this application,
the desired user accuracy for SW task resource consumption
requires using a mix of accurately pre-characterised SW task
models for known and unchanging functions, with new functions
modelled using general and specifically tuned SW estimators.

This approach can best be described as ‘co-design of derivatives’
based on a co-verification approach using virtual prototypes.

4.3 Digital Multimedia Industry
VCC has been used in the design methodology for platform-based
digital video products [6,7] and indeed extensive modelling work
has been done to extract high-level statistical design data from
design space exploration of a digital multimedia platform. This
work on design space exploration has been done in conjunction
with Philips. The kind of design used in this study is illustrated in
Figure 4, which shows application function, platform architecture
and a candidate mapping.

Tvld_ bits_ In

T

m

T
v
d
_
p

o
p
_

e
q
_

n

O

m
b
_
Q
F
S
_
O
u

T

s

q
_
p
r
o
p
_
m
b
_
O
u

Tde c MV_ pr op _p red _O ut

Td ec MV _p rop _m v_ Ou t

co sy _in it

Th d r_sta tu s_I n

T

m

O
O

T

O

M

T

c
o
s
y
_
n

M

T
d
e
c
M

V
_
p

o
p
_
p
c
_

n

Tpre dic t_ mv _O ut

Tp red ict_p rop _ pre d_ Out

Tp red ict_p rop _ seq _Ou t

Tm em ory _mb _ p_ In

Tp red ict_to ken _O ut

m b_ F_ Out

Tidc t_p rop _se q _Ou t

Tid ct_p rop _m b _Ou t

co sy _in it

m b_ f_Ou t

Ta dd _p rop _se q_ Ou t

Ta dd _p rop _m b _Ou t

c
o

y
_

n

mb _d _O ut

Tw rite MB_ pro p_ se q_ Out

TwriteMB_p rop _m b_ Ou t

o

y
_
n

TwriteMB_ mem _id _In

Tm em Ma n_ pr op _se q_ Ou t

Tm emMa n_ cmd _O ut

T
m

m

m

Tmem Man _p rop _p ic_ Out

c osy _ init

T
p
r
e
d
c

_
r
e
f
_
m

e
m
_
d
_
O
u

Tou tp ut_ cm d_ Ou t

Tou tp ut_ pro p_ se q_ Out

Tou tp ut_ pic_ Ou t

c os y _init

T
m

m

M

To utp ut_line _a d dre ss_I n

T
w

ri
t
e
M

B
_
a
c
k
_

Tou tp ut_ lin e_ da ta _O ut

co sy _init

T
m
e
m

M

a
n
_
d
y
_
m
e

Y_ In fo

Y _Da ta

U_ In fo

U _Da ta

V_ In fo

V_ Da ta

Sin fo

finfo

c osy _ in it

YHS1

YSH1YSH1YSH1YSH1

YHS1VHH1

YSS1YHH1YSH1YHS1

YHH1YSH1YSS1

YHHPYHHPYSH1YHH1

YHHPYHHPYHH1YHH1

YHH1YHHPYSH1YHHP

YHHPYHH1YHHPYHHP

YSH1

YHS1

YHSP

YHSP

YHSP

YHH1

YHHP

YSH1 YSH1 YSH1

YSH1 YSH1

fin fo

Sinfo

t_hdr

t_output

YSH1

YSH1

YHH1

YSH1

CPUDSP

VMPG_
AUX

MSP

MAIN
MEMORY

MBS

VMPG

pSOSRTOSpSOS

MM
BUS

CTL
BUS

FM_MEM

t_predict t_memoryt_decMVt_vld

t_writeMB t_memMant_addt_idctt_isiq

Tvld_ bits_ In

T

m

T
v
d
_
p

o
p
_

e
q
_

n

O

m
b
_
Q
F
S
_
O
u

T

s

q
_
p
r
o
p
_
m
b
_
O
u

Tde c MV_ pr op _p red _O ut

Td ec MV _p rop _m v_ Ou t

co sy _in it

Th d r_sta tu s_I n

T

m

O
O

T

O

M

T

c
o
s
y
_
n

M

T
d
e
c
M

V
_
p

o
p
_
p
c
_

n

Tpre dic t_ mv _O ut

Tp red ict_p rop _ pre d_ Out

Tp red ict_p rop _ seq _Ou t

Tm em ory _mb _ p_ In

Tp red ict_to ken _O ut

m b_ F_ Out

Tidc t_p rop _se q _Ou t

Tid ct_p rop _m b _Ou t

co sy _in it

m b_ f_Ou t

Ta dd _p rop _se q_ Ou t

Ta dd _p rop _m b _Ou t

c
o

y
_

n

mb _d _O ut

Tw rite MB_ pro p_ se q_ Out

TwriteMB_p rop _m b_ Ou t

o

y
_
n

TwriteMB_ mem _id _In

Tm em Ma n_ pr op _se q_ Ou t

Tm emMa n_ cmd _O ut

T
m

m

m

Tmem Man _p rop _p ic_ Out

c osy _ init

T
p
r
e
d
c

_
r
e
f
_
m

e
m
_
d
_
O
u

Tou tp ut_ cm d_ Ou t

Tou tp ut_ pro p_ se q_ Out

Tou tp ut_ pic_ Ou t

c os y _init

T
m

m

M

To utp ut_line _a d dre ss_I n

T
w

ri
t
e
M

B
_
a
c
k
_

Tou tp ut_ lin e_ da ta _O ut

co sy _init

T
m
e
m

M

a
n
_
d
y
_
m
e

Y_ In fo

Y _Da ta

U_ In fo

U _Da ta

V_ In fo

V_ Da ta

Sin fo

finfo

c osy _ in it

YHS1

YSH1YSH1YSH1YSH1

YHS1VHH1

YSS1YHH1YSH1YHS1

YHH1YSH1YSS1

YHHPYHHPYSH1YHH1

YHHPYHHPYHH1YHH1

YHH1YHHPYSH1YHHP

YHHPYHH1YHHPYHHP

YSH1

YHS1

YHSP

YHSP

YHSP

YHH1

YHHP

YSH1 YSH1 YSH1

YSH1 YSH1

fin fo

Sinfo

t_hdr

t_output

YSH1

YSH1

YHH1

YSH1

YSH1

YSH1

YHH1

YSH1

CPUDSP

VMPG_
AUX

MSP

MAIN
MEMORY

MBS

VMPG

pSOSRTOSpSOSpSOSRTOSpSOS

MM
BUS

CTL
BUS

FM_MEM

t_predict t_memoryt_decMVt_vld

t_writeMB t_memMant_addt_idctt_isiq

Figure 4: Multimedia application, architecture and mapping

This study has defined the role of the Design Space Architect,
who plays a central role in fostering interactions in the product
design chain. The design space architect provides quantitative
comparisons of various hypothetical products that can be
implemented on the platform. This can be used for negotiation
between designers at different levels of abstraction: the
application, SoC integration and hardware or software module
implementation. The guiding principle of the design space
architect is to document the entire set-up context and the results of
the comparison studies so that they can be reproduced. This
ensures that various design teams are working with the same

assumptions, and also allows adaptability of the design decisions
to market or technology changes that occur during the product
development. The design space architect uses a methodology that
allows storage, analysis and communication of all relevant
information about a virtual product between design teams at their
own levels of abstraction. Execution throughput and memory
bandwidths specified at the system-level can be unambiguously
communicated to implementation teams, and negotiation can take
place around a central set of models, analyses and assumptions.
The reproducibility of performance measurements allows
incremental refinement of design decisions during
implementation, as the availability of measurements from
designed modules allows back-annotation of more accurate data to
the system models.

The design space exploration (DSE) approach adds the following
key methods on top of the function-architecture co-design method
supported by the basic tool:

• Building a database of ‘mappings’ of function to
architecture. Since design space exploration involves
exploring a number of candidate mappings of function
onto HW and SW components, and analysis of the
communications implications of the same, it is
important to build up a comprehensive database of
mapping experiments. To assess and fully characterise
the platform over its desired field of use, the mappings
should include both ‘good’ and ‘bad’ experiments (i.e.
those which do not meet overall platform objectives). A
relational database is used to store this information.

• Specialised statistical probes to extract higher-level data
from the various DSE experiments without needing to
keep huge files of simulation results, and to allow
synchronisation of system state for particular DSE
experiments. DSE needs a mapping-invariant execution
context to be set up to compare alternative
implementations. This approach uses functional or
high-level events to synchronise system state, and also
gathers data based on these functional events rather than
low-level data and control activity. Such probes include
observers of CPU, memory and bus activity.

• Gathering statistical data through VCC-based
simulation runs of the platform and through pruning the
vast amount of output data with the statistical probes.
Figure 5 illustrates output from statistical probes – an
example showing write transaction delays per picture
frame on the multimedia platform.

SH2 (22/02/2002 14:50:38)
APP Transactions - Write - Actual Delay per channel per frame

24W

56W

37W

76W

54W

78W

29W0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Observation Window

actualDelay (sec) SH2 (22/02/2002 14:50:38)
APP Transactions - Write - Actual Delay per channel per frame

24W

56W

37W

76W

54W

78W

29W0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Observation Window

actualDelay (sec)

Figure 5: Output of Statistical Probes

• Support for intelligent DSE queries which allow users
to enquire for statistics relevant to particular design
mapping experiments

• Analysis ‘workbooks’ that support application analysis
(how well are certain multimedia applications supported
on the particular platform, in terms of their overall

timing and resource consumption and constraints),
process analysis (detailed analysis at the task level
rather than the overall application), and
communications analysis (bandwidth achieved in terms
of high level communication transactions). Figures 6,
7 and 8 illustrate analysis outputs for the resource
utilisation, process, and communication bandwidth
views.

SH2 (3/13/2002 2:29:37 PM)
Workload of Arch. Resources (average per frame)

7R 15R

12E 13E

15E

16E

15Eb

15E

15W

9W

8E 10E 11E 12W 13W

14W

0 5 10

cpudsp

fm_mem

vmpg

vmpg_aux

mbs

msp1_2

main_memory

mm_bus

resource

avgActualDelay (msec)

12E

15E

procID name
7 t_hdr
8 t_idct
9 t_memory
10 t_isiq
11 t_add
12 t_vld
13 t_predict
14 t_writeMB
15 t_decMV

procID name
7 t_hdr
8 t_idct
9 t_memory
10 t_isiq
11 t_add
12 t_vld
13 t_predict
14 t_writeMB
15 t_decMV

SH2 (3/13/2002 2:29:37 PM)
Workload of Arch. Resources (average per frame)

7R 15R

12E 13E

15E

16E

15Eb

15E

15W

9W

8E 10E 11E 12W 13W

14W

0 5 10

cpudsp

fm_mem

vmpg

vmpg_aux

mbs

msp1_2

main_memory

mm_bus

cpudsp

fm_mem

vmpg

vmpg_aux

mbs

msp1_2

main_memory

mm_bus

resource

avgActualDelay (msec)

12E

15E

procID name
7 t_hdr
8 t_idct
9 t_memory
10 t_isiq
11 t_add
12 t_vld
13 t_predict
14 t_writeMB
15 t_decMV

procID name
7 t_hdr
8 t_idct
9 t_memory
10 t_isiq
11 t_add
12 t_vld
13 t_predict
14 t_writeMB
15 t_decMV

Figure 6: Resource Utilisation View
SH2 (3/13/2002 2:29:37 PM)

Breakdown of Process Execution on Architectural Resources (average per frame)

0 2 4 6 8 10

R2

R7 E7

R7 E7

R7 E7

E11

R2 R36 E2 E32 E36 W2

R11 E11 W7

W11 W36

E11 W7 W36

E7 W4 W36

t_memMan

t_hdr

t_idct

t_memory

t_isiq

t_add

t_vld

t_predict

t_writeMB

t_decMV

t_output

process

avgActualDelay (msec)

arcID name type
2: cpudsp processor
4: fm_mem asic
7: vmpg asic
11: vmpg_aux asic
32: main memory memory
36: mm_bus bus

arcID name type
2: cpudsp processor
4: fm_mem asic
7: vmpg asic
11: vmpg_aux asic
32: main memory memory
36: mm_bus bus

SH2 (3/13/2002 2:29:37 PM)
Breakdown of Process Execution on Architectural Resources (average per frame)

0 2 4 6 8 10

R2

R7 E7

R7 E7

R7 E7

E11

R2 R36 E2 E32 E36 W2

R11 E11 W7

W11 W36

E11 W7 W36

E7 W4 W36

t_memMan

t_hdr

t_idct

t_memory

t_isiq

t_add

t_vld

t_predict

t_writeMB

t_decMV

t_output

process

avgActualDelay (msec)

SH2 (3/13/2002 2:29:37 PM)
Breakdown of Process Execution on Architectural Resources (average per frame)

0 2 4 6 8 10

R2

R7 E7

R7 E7

R7 E7

E11

R2 R36 E2 E32 E36 W2

R11 E11 W7

W11 W36

E11 W7 W36

E7 W4 W36

t_memMan

t_hdr

t_idct

t_memory

t_isiq

t_add

t_vld

t_predict

t_writeMB

t_decMV

t_output

R2

R7 E7R7 E7

R7 E7R7 E7

R7 E7R7 E7

E11

R2 R36 E2 E32 E36 W2R2 R36 E2 E32 E36 W2

R11 E11 W7R11 E11 W7

W11 W36W11 W36

E11 W7 W36E11 W7 W36

E7 W4 W36E7 W4 W36

t_memMan

t_hdr

t_idct

t_memory

t_isiq

t_add

t_vld

t_predict

t_writeMB

t_decMV

t_output

process

avgActualDelay (msec)

arcID name type
2: cpudsp processor
4: fm_mem asic
7: vmpg asic
11: vmpg_aux asic
32: main memory memory
36: mm_bus bus

arcID name type
2: cpudsp processor
4: fm_mem asic
7: vmpg asic
11: vmpg_aux asic
32: main memory memory
36: mm_bus bus

Figure 7: Process View

SH2 (14/03/2002 21:52:56)
IO Rates - avg Actual versus avg Intrinsic (Byte/sec, log scale)

18R

24R

38R

41R44R

49R

63R

69R

13W

18W

24W

38W

41W

44W

49W
63W

69W 20R

23R

29R

35R

55R

61R68R
29W

55W

61W

68W

14R54R

56R

75R

14W

54W

56W

75W

52R

48W

52W

17R

26R

27R
31R

34R

53R

58R59R

62R 71R

74R

76R

17W

26W

27W

34W
53W

59W74W

76W

37W

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+09

1,0E+10

1,0E+06 1,0E+07 1,0E+08 1,0E+09

avgIntraRate

avgActualRate

YHH1
YHHP
YHS1
YHSP
YSH1
YSS1

SH2 (14/03/2002 21:52:56)
IO Rates - avg Actual versus avg Intrinsic (Byte/sec, log scale)

18R

24R

38R

41R44R

49R

63R

69R

13W

18W

24W

38W

41W

44W

49W
63W

69W 20R

23R

29R

35R

55R

61R68R
29W

55W

61W

68W

14R54R

56R

75R

14W

54W

56W

75W

52R

48W

52W

17R

26R

27R
31R

34R

53R

58R59R

62R 71R

74R

76R

17W

26W

27W

34W
53W

59W74W

76W

37W

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+09

1,0E+10

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+09

1,0E+10

1,0E+06 1,0E+07 1,0E+08 1,0E+09

avgIntraRate

avgActualRate

YHH1
YHHP
YHS1
YHSP
YSH1
YSS1

YHH1
YHHP
YHS1
YHSP
YSH1
YSS1

Figure 8: Communications View - Actual vs. intrinsic IO rates

• Advanced statistical analysis techniques that support
more sophisticated analysis; for example, Principal
Component Analysis in which high-level characteristics
can be correlated with various performance measures to
understand the key characteristics contribution to
overall performance and provide a statistical basis for
system level design rules of thumb. Figure 9 illustrates
Principal Component Analysis results applied to various
communication channels and correlations with design
attributes. The relative correlations of one architecture
vs. another allow design decisions to be taken at a more
abstract level.

SH2 Communication Channels (PCA; F1 & F2 axes: 72%)

13w14r

14w

17r17w

18w

18r

20w

20r

23w

23r

24w

24r
26w26r27w27r

29w
29r

31r

31w

34w34r

35r

35w

37w37r

38r38w

41r

41w
44r

44w

48r

48w

49w49r

52r52w53r53w

54r

54w55r
55w

56r

56w

58w58r59w
59r

61r61w

62w

62r

63w

63r

68w
68r

69w

69r

71r71w
74w74r

75w

75r

76r76w

avgNbTransaction

avgNbByte

avgActualDelay

avgIntraDelay

avgBlockingDelay

avgFifoSlots avgNbBlocking

-1

0

1

-0,4 0 1

-- F1 (46 %) -->

--
F2

 (2
6

%
) -

->
SH2 Communication Channels (PCA; F1 & F2 axes: 72%)

13w14r

14w

17r17w

18w

18r

20w

20r

23w

23r

24w

24r
26w26r27w27r

29w
29r

31r

31w

34w34r

35r

35w

37w37r

38r38w

41r

41w
44r

44w

48r

48w

49w49r

52r52w53r53w

54r

54w55r
55w

56r

56w

58w58r59w
59r

61r61w

62w

62r

63w

63r

68w
68r

69w

69r

71r71w
74w74r

75w

75r

76r76w

avgNbTransaction

avgNbByte

avgActualDelay

avgIntraDelay

avgBlockingDelay

avgFifoSlots avgNbBlocking

-1

0

1

-0,4 0 1

-- F1 (46 %) -->

--
F2

 (2
6

%
) -

->

Figure 9: Principal Component Analysis of Communications
Channels

With this advanced DSE ‘toolbox’ it then becomes possible to
analyse new derivative applications and standards for digital
multimedia, to determine without vast amounts of simulation their
fit to the platform and required changes. Essentially DSE moves
the extensive analysis required for a specific derivative forward in
time so that less simulation is required for a specific product, and
the risk of implementing it is reduced.

One area of future extension of this methodology is to look at
more sophisticated bundling of multiple SW tasks, so that instead
of each functional process mapping to a separately schedulable
RTOS task, multiple related processes can be combined into one
internally statically scheduled RTOS task. This will allow a more
efficient use of system processor resources and the implications of
this on overall system efficiency can be studied. Methods such as
quasi-static scheduling could be used.

5. SOFTWARE
Our experiments with co-design methods and tools indicate that
the methodology is sound and that sophisticated DSE is possible.
However, for many applications, which are mostly implemented
in software on a well-understood platform, this approach may
both be too hardware-centric, and require too much additional
effort from system and software architects to be the best
methodology.

Alternative approaches that might be considered are the use of
rapid platform prototyping, to provide a ‘real’ or realistic HW
base on which to run application software, or higher-level
software abstractions, including virtual prototyping. VCC is a
kind of virtual prototype; other alternatives are the linking of
high-level processor and hardware models using C/C++ and
variations such as SystemC. We have already mentioned
approaches of the second kind such as Virtio, VAST, and Axys.
Rapid prototyping suffers from relatively poor observability and
controllability, although able to run huge amounts of system data
and very large testbenches. In addition, rapid prototyping
demands that the software tasks be relatively close to final
implementation in order to run with the RTOS, middleware and
Hardware-dependent Software on the platform rapid prototype.
While credible late in a design project, it is often not suitable
early in design (even for derivative design where most of the SW

is based on reused components). The virtual prototyping
approaches still are more suited to HW-centric designers.

An alternative approach is to link the HW and SW worlds in a
way that stays within the SW modelling and development
environments used by SW architects. This includes simulators
available within Integrated Development Environments offered by
RTOS vendors (for example, VxSim within VxWorks offered by
Wind River), and looking for projections of underlying platform
characteristics within SW modelling and code generation
approaches. The latter includes both SDL (the ITU-T language
often used for communications protocols) and UML (the Unified
Modelling Language supported by the Object Management Group
(OMG)).

Although the OMG is evolving UML to support real-time
extensions and related areas of need in its 2.0+ UML standards
efforts, (including adding action semantics, additional software
component support, and modelling of performance, schedulability
and time), there are still some key areas lacking [8]. The two
areas which need additional work are platform service
descriptions, where platforms consist of ‘stacks’ of offered
services layered on underlying HdS and hardware; and better
support for mapping as a refinement approach moving from high-
level software models to detailed implementations, via manual or
automated code generation.

Further work in this direction is likely over the next several years
as the traditional HW-based system design and SW-based high-
level SW modelling worlds collide.

6. CONCLUSIONS
In this paper we have talked about a number of platform-based co-
development approaches, spanning a variety of co-design and co-
verification methods and tools.

What is the likely future of these methods? It seems likely that as
additional platforms are defined in a variety of product domains
(wireless and wired communications being a strong opportunity,
especially at the consumer end), extensive methods for Design
Space Exploration during platform creation will be required. By
characterising platforms abstractly and statistically, derivative
design will be less risky and require less extensive system level
simulation or virtual prototyping. Given a derivative design
process that concentrates mainly on the fit of a design to the
platform computing and communications resources, hardware-
based rapid prototyping will substitute for SW-based simulation
in the derivative verification process. Thus co-verification will
become increasingly hardware-based.

Finally, projections of platform characteristics into SW modelling
and automated code generation approaches will allow more
optimal SW development processes to be used by more and more
SW designers, leading to increases in productivity and true
optimising SW synthesis that bring some of the HW flow
productivity to the SW world.

It is also possible that in the future, breakthroughs in system
design methodology may not come only from tools and models,
but from the nature of the architecture itself. We see that in
modern processors, it is often vital to co-design the CPUs and the
compilers, in order that the concurrent hardware resources offered
by multiple processors can be effectively exploited by the
software whose access to those resources is mediated by the

compiler. In a similar fashion, new architectural concepts, to be
effectively exploited by systems designers, may need to be co-
developed with the system design tools and methods so that
advanced architectural features have practical methods to use
them. This may require, in the design space exploration methods
discussed herein, development of new measurement methods and
their direct support by hardware and software monitors built into
the platform itself.

7. REFERENCES
[1] Alberto Sangiovanni-Vincentelli and G. Martin, “A Vision

for Embedded Systems: Platform-Based Design and
Software Methodology”, IEEE Design and Test of
Computers, Volume 18, Number 6, November-December,
2001, pp. 23-33.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly and L.
Todd, Surviving the SOC Revolution: A Guide to Platform-
Based Design, Kluwer Academic Publishers: November,
1999.

[3] Jim Tobias (editor), VSI Alliance, Platform-Based Design
DWG, List of Terms and Definitions, Revision 4, 4 March
2002.

[4] Barry O'Rourke, Paolo Giusto, Thilo Demmeler and Steve
Wisniewski, “Rapid prototyping of automotive
communication protocols”, 12th. International Workshop on
Rapid System Prototyping, 2001, pp. 64 –69.

[5] Thilo Demmeler and Paolo Giusto, “A universal
communication model for an automotive system integration
platform”, Design, Automation and Test in Europe (DATE)
2001, pp. 47 –54.

[6] E.A. de Kock, G. Essink, W.J.M. Smits, R. van der Wolf, J.-
Y. Brunel, W.M. Kruijtzer, P. Lieverse, and K.A.Vissers,
“YAPI: application modeling for signal processing systems”,
Design Automation Conference 2000, pp. 402 –405.

[7] J.-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, L.
Pasquier, E.A. de Kock, and W.J.M. Smits, “COSY
communication IP's”, Design Automation Conference 2000,
pp. 406 –409.

[8] G. Martin, L. Lavagno, J. Louis-Guerin, “Embedded UML:
a merger of real-time UML and co-design”, CODES 2001,
Copenhagen, pp 23-28.

