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ABSTRACT 

In this paper we focus on platform-based design of complex 
SoC products and the methodologies involved in both creating 
platforms and using them to design derivatives.  In particular, 
we concentrate on the co-development of software and 
hardware:  including co-design and co-verification stages.   
After defining the methodologies and describing their key 
steps, we summarise specific industrial experience, and draw 
conclusions about the future evolution of these methodologies.  
This includes some key ideas about the future of co-design as 
seen by embedded SW developers. 

1. INTRODUCTION 
The co-development of complex embedded HW-SW products 
involves the relatively new steps of co-design and co-verification.   
These methods have been talked about for a number of years but 
have not been central to the design of many systems up until now.  
Indeed, system-level design and associated methodologies have 
hardly taken off.  However, the growing importance of platform-
based design places new emphasis on the key technologies of 
HW-SW co-development.   We start first by coming up with a 
simple definition of platform-based design. 

2. PLATFORM-BASED DESIGN 
Platform-based design of complex products including embedded 
system-on-chip (SoCs) has been discussed frequently in recent 
years [1,2].  It is defined in various ways, but one source of good 
definitions (as of February 2002) comes from the VSIA Platform-
Based Design Study Group.  It defines a platform as “a library of 
virtual components and an architectural framework consisting of a 
set of integrated and pre-qualified software and hardware IP 
blocks, models, EDA and software tools, libraries and 
methodology to support rapid product development through 
architectural exploration, integration and verification.”    
Platform-based design is then defined as:  “An integration-
oriented design approach emphasizing systematic reuse, for 
developing complex products based upon platforms, intended to 
reduce development risks, costs and time to market. Within the 
VSIA the scope of the platform is bounded to the SoC.”  [3] 

This design approach has implications for the design methodology 
and type of system-level design tools used to support it.  In 
particular, we note that since we are talking about complex 
embedded systems, with substantial software content, the issues of 
co-design and co-verification, in which both hardware and 

software considerations are important, must be a major part of the 
methodology. 

3. METHODOLOGIES 
In platform-based design, we need to distinguish clearly between 
the process of platform development, and the process of specific 
product development using the platform.  The latter is commonly 
referred to as ‘derivative design’.   The key tasks involved in 
creating the platform, and in using it, may be superficially similar, 
but differ substantially in details.   The implications for co-design 
and co-verification are important.   Figure 1 illustrates the key co-
development methods overall, that would be used in designing a 
product in one pass from start to finish. 
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Figure 1:  Key Co-Development Methods 

The general tasks include modelling applications and platform 
architectures, design space exploration, links to implementation, 
and co-verification.  These are described in more detail as part of 
platform development and derivative design in the next sections.  



The general approach used is that of ‘function-architecture co-
design’. 

3.1 Platform Development Methodology 
In platform development, co-design is most significant.  That is, 
the issue of partitioning and mapping system functionality into 
portions that will be implemented as software running on 
embedded processors vs. direct hardware implementations 
assumes fundamental importance.  Note that in addition, the 
communications between architectural components implied by 
these partitioning and mapping decisions is also of key 
importance.   The idea of ‘software-software’ co-design, where 
most functions are implemented in software on a platform with 
multiple embedded processors, makes the issue of which task 
maps to which processor, and the inter-processor communications 
requirements entailed by this choice, of growing importance.  To 
support co-design and this partitioning, design space exploration 
is the key task. 
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Figure 2:  Platform Development Methodology 

In Figure 2, we show the key tasks involved in platform 
development.   These include: 

• Gathering platform family requirements: determining 
the common requirements for the intended application 
domain and family of applications that will form the 
underpinning of platform decision-making.    This 
includes identification of current and possible future 
standards, which the platform will support. 

• Developing or re-using target application models:  these 
may come from standards bodies, and a variety of 
internal and external sources. 

• Developing a platform architecture concept: this 
includes selection of candidate processing and on-chip 
communications IP blocks, hardware blocks, RTOSs as 
appropriate, and other hardware-dependent software, as 
well as middleware and target-domain application 
software.    The concept may include multiple 
architectures and candidate IP blocks. 

• Design Space Exploration (DSE): mapping the 
application models to the candidate architectures and IP 
blocks to determine the fit of the applications to the 
architecture, the remaining design margin, the 
sensitivity of the architecture-application combinations 
and to answer key design questions.   This involves a 
variety of simulation-based and analytical approaches 
for performance, power, and cost. 

• Platform Implementation: once a candidate architecture 
and IP libraries are chosen, implement the platform to 
the design hand-off level chosen by the design team and 
company business model, which will be the starting 
point of derivative design.  This could be at RTL, 
layout, or indeed full-chip level for a reconfigurable 
platform. 

• Generation of Platform Libraries: generate the design 
artefacts, which will be the starting point for derivative 
design and rigorously store them into well-organised 
libraries. 

The key step here is that of Design Space Exploration.    This will 
be discussed in more detail later, with a multimedia example. 

3.2 Derivative Design Methodology 
In derivative design, co-verification is the key design step.   
Derivative design emphasises the rapid assembly of a product-
specific design using the platform via detailed configuration, and 
verification that the derivative product will fit on the platform and 
that the components and the platform architecture chosen will 
meet design requirements.  Co-verification is a key task for 
ensuring this. 
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Figure 3:  Derivative Design Methodology 

In Figure 3, we show the key steps involved in derivative design.  
These include: 



• Gather the requirements for the specific derivative 
product and ensure that the chosen platform ‘field of 
use’ is appropriate. 

• Draw on the reference platform library for basic 
architecture and choice of pre-validated and 
characterised virtual components (HW and SW), which 
are required for the specific product derivative. 

• Configure the platform and assemble the selected 
virtual components into it.    

• Verify the resulting derivative product design.  Since 
any significant platform involves embedded 
processor(s), and SW components – at least Hardware-
dependent Software (HdS) such as the real-time 
operating system (RTOS), and device drivers – the 
derivative design will involve significant software at 
both HdS and application levels as well as appropriate 
middleware.  Thus some amount of HW-SW co-
verification will be required.    For platforms that are 
mainly software-programmable, this may be an almost 
pure validation of the software’s ‘fit’ onto the platform, 
both for computing and communications resources.     
Such co-verification could include both SW-based 
simulation and a variety of emulation and rapid 
prototyping methods. 

• After co-verification has proven the derivative design 
will work, there is a final implementation stage.  This 
may be a significant IC design experience (for 
platforms defined at the mostly RTL level, for example) 
or a small one (for ‘hard’ layout platforms with little 
hardware variability), to almost none at all (for a 
reconfigurable logic-based platform with embedded 
processors – a “highly programmable platform” or what 
has been called a “platform FPGA”).    Thus the time 
and effort required for final implementation, fabrication 
and prototype testing will vary widely, depending on 
the implementation style. 

Co-verification will be discussed in more detail later with an 
automotive example. 

4. INDUSTRIAL EXPERIENCE 
We first discuss the state of design tools for various steps of the 
co-development process, and then discuss some specific industrial 
experience in automotive and multimedia application areas. 

4.1 The State of the Design Tools 
Co-design and co-development tools have emerged in the last 
several years, although none of the current crop of tools has taken 
off into widespread commercial use.    This is part and parcel of 
the problems with the adoption of system-level design tools 
within the industry.   Notwithstanding the relative lack of 
adoption, it is indeed possible to construct a credible platform-
based co-development flow using commercial tools, albeit with a 
significant amount of flow engineering and model development.  
Many design groups continue to rely on internal tool 
developments and ad-hoc methods for system design. 

In co-design, notable commercial tools include VCC from 
Cadence, Archimate and Cosimate from Arexys (now TNI-
Valiosys), Foresight from Foresight Systems (was Nuthena) and, 
to a more limited extent, N2C from CoWare.   In co-verification, 

key commercial tools include Seamless from Mentor (having the 
lions share of the commercial market), N2C from CoWare, and, to 
a more limited extent, Eaglei from Synopsys (widely rumoured to 
be no longer under development) and V-CPU from Innoveda.   
SW-based co-simulation suffers from the significant effort 
required to acquire or develop Instruction Set Simulation models 
that integrate effectively with HDL simulation.  This has led to 
two other approaches for co-verification:  first, the creation of 
‘Virtual Prototyping’ environments at the system-level using high 
level models of both processors and HW peripherals; and second, 
the use of HW-based rapid prototyping or emulation systems.   
Prominent examples for the first approach include Virtio, Axys, 
and VAST.    The second approach has been advocated by 
traditional emulation approaches such as Quickturn, IKOS, and 
Mentor Celaro; and other architectures such as Aptix, Axis, 
Tharas, and Simpod.    

Before system-level co-development tools become more popular 
commercially, certain requirements for commonly-adopted and 
widely-accepted modelling infrastructure must be met.   Among 
these are be the widespread use of a common system level design 
language such as SystemC so that models have a much higher 
likelihood of true interoperability across various proprietary and 
internal tools.     

4.2 Automotive Industry 
Cadence has carried out significant work in adapting co-design 
technology (VCC) to the automotive industry, notably in 
partnership with BMW [4,5].   In this approach, the underlying 
system platform architecture is that of a network of electronic 
control units (ECUs) interconnected by a system bus 
implementing one of a variety of automotive communications 
protocols such as CAN, TTP, ByteFlyte, or FlexRay.    Each ECU 
consists of an embedded microcontroller and associated memory; 
these are usually discrete units, not integrated into an SoC, and 
the system bus is discrete wiring.  However, the principles of co-
design and co-verification are similar no matter whether the 
integration is into one SoC or a more distributed embedded 
system. 

The primary co-design task in this design is actually what we call 
‘software-software co-design’.   This is targeted at designing 
specific automotive derivative products, as the basic platform is 
well known.    The distributed network of ECUs is the delivery 
vehicle for a number of different functions implemented as 
software tasks running on the ECUs.     These software tasks, in 
the VCC flow for BMW, are created using the ETAS ASCET 
tool, which models software as finite state machines.  The ASCET 
flow generates executable code for the set of tasks that are to be 
mapped to the ECUs.   The key co-design questions, which need 
to be answered, are: 

• How many ECUs are required to adequately execute the 
tasks and yet leave sufficient margin for future software 
running on the network and for modifications required 
to the existing functions? 

• How are the ECUs to be configured?   Memory 
requirements are especially important as the automotive 
domain exhibits severe cost-sensitivity. 

• Is the communications network adequate for the inter-
task and inter-ECU communications (message and data 
passing) implied by the application tasks and their 
mapping and distribution on the ECUs?    This is in 



terms of bandwidth, latency, redundancy, and safety 
considerations.    Tasks running on the same ECU may 
communicate via shared-memory message passing; tasks 
on different ECUs need to use the system bus. 

To provide communications model flexibility for existing and 
future standards, without imposing an extraordinary modelling 
effort, Cadence and BMW have worked to create a Universal 
Communications Model (UCM), which can be used to model 
several different protocols.  This will also allow virtual 
prototyping of future communications protocols without requiring 
their detailed implementation to carry out co-design studies and 
tradeoffs. 

Although SW estimation methods can be used in this application, 
the desired user accuracy for SW task resource consumption 
requires using a mix of accurately pre-characterised SW task 
models for known and unchanging functions, with new functions 
modelled using general and specifically tuned SW estimators. 

This approach can best be described as ‘co-design of derivatives’ 
based on a co-verification approach using virtual prototypes. 

4.3 Digital Multimedia Industry 
VCC has been used in the design methodology for platform-based 
digital video products [6,7] and indeed extensive modelling work 
has been done to extract high-level statistical design data from 
design space exploration of a digital multimedia platform.    This 
work on design space exploration has been done in conjunction 
with Philips.  The kind of design used in this study is illustrated in 
Figure 4, which shows application function, platform architecture 
and a candidate mapping. 
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Figure 4:  Multimedia application, architecture and mapping 

This study has defined the role of the Design Space Architect, 
who plays a central role in fostering interactions in the product 
design chain.   The design space architect provides quantitative 
comparisons of various hypothetical products that can be 
implemented on the platform.    This can be used for negotiation 
between designers at different levels of abstraction:  the 
application, SoC integration and hardware or software module 
implementation.  The guiding principle of the design space 
architect is to document the entire set-up context and the results of 
the comparison studies so that they can be reproduced.   This 
ensures that various design teams are working with the same 

assumptions, and also allows adaptability of the design decisions 
to market or technology changes that occur during the product 
development.  The design space architect uses a methodology that 
allows storage, analysis and communication of all relevant 
information about a virtual product between design teams at their 
own levels of abstraction.   Execution throughput and memory 
bandwidths specified at the system-level can be unambiguously 
communicated to implementation teams, and negotiation can take 
place around a central set of models, analyses and assumptions.    
The reproducibility of performance measurements allows 
incremental refinement of design decisions during 
implementation, as the availability of measurements from 
designed modules allows back-annotation of more accurate data to 
the system models. 

The design space exploration (DSE) approach adds the following 
key methods on top of the function-architecture co-design method 
supported by the basic tool: 

• Building a database of ‘mappings’ of function to 
architecture.  Since design space exploration involves 
exploring a number of candidate mappings of function 
onto HW and SW components, and analysis of the 
communications implications of the same, it is 
important to build up a comprehensive database of 
mapping experiments.  To assess and fully characterise 
the platform over its desired field of use, the mappings 
should include both ‘good’ and ‘bad’ experiments (i.e. 
those which do not meet overall platform objectives).  A 
relational database is used to store this information. 

• Specialised statistical probes to extract higher-level data 
from the various DSE experiments without needing to 
keep huge files of simulation results, and to allow 
synchronisation of system state for particular DSE 
experiments.  DSE needs a mapping-invariant execution 
context to be set up to compare alternative 
implementations.  This approach uses functional or 
high-level events to synchronise system state, and also 
gathers data based on these functional events rather than 
low-level data and control activity.  Such probes include 
observers of CPU, memory and bus activity. 

• Gathering statistical data through VCC-based 
simulation runs of the platform and through pruning the 
vast amount of output data with the statistical probes.  
Figure 5 illustrates output from statistical probes – an 
example showing write transaction delays per picture 
frame on the multimedia platform. 



SH2  (22/02/2002 14:50:38)
APP Transactions - Write - Actual Delay per channel per frame

24W

56W

37W

76W

54W

78W

29W0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Observation Window

actualDelay (sec) SH2  (22/02/2002 14:50:38)
APP Transactions - Write - Actual Delay per channel per frame

24W

56W

37W

76W

54W

78W

29W0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Observation Window

actualDelay (sec)

 

Figure 5: Output of Statistical Probes 

• Support for intelligent DSE queries which allow users 
to enquire for statistics relevant to particular design 
mapping experiments 

• Analysis ‘workbooks’ that support application analysis 
(how well are certain multimedia applications supported 
on the particular platform, in terms of their overall 

timing and resource consumption and constraints), 
process analysis (detailed analysis at the task level 
rather than the overall application), and 
communications analysis (bandwidth achieved in terms 
of high level communication transactions).   Figures 6, 
7 and 8 illustrate analysis outputs for the resource 
utilisation, process, and communication bandwidth 
views. 
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Figure 6:  Resource Utilisation View 
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Figure 7:  Process View 
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Figure 8:  Communications View - Actual vs. intrinsic IO rates 

• Advanced statistical analysis techniques that support 
more sophisticated analysis; for example, Principal 
Component Analysis in which high-level characteristics 
can be correlated with various performance measures to 
understand the key characteristics contribution to 
overall performance and provide a statistical basis for 
system level design rules of thumb.  Figure 9 illustrates 
Principal Component Analysis results applied to various 
communication channels and correlations with design 
attributes.  The relative correlations of one architecture 
vs. another allow design decisions to be taken at a more 
abstract level. 



SH2 Communication Channels (PCA; F1 & F2 axes: 72%)
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Figure 9:  Principal Component Analysis of Communications 
Channels 

With this advanced DSE ‘toolbox’ it then becomes possible to 
analyse new derivative applications and standards for digital 
multimedia, to determine without vast amounts of simulation their 
fit to the platform and required changes.  Essentially DSE moves 
the extensive analysis required for a specific derivative forward in 
time so that less simulation is required for a specific product, and 
the risk of implementing it is reduced. 

One area of future extension of this methodology is to look at 
more sophisticated bundling of multiple SW tasks, so that instead 
of each functional process mapping to a separately schedulable 
RTOS task, multiple related processes can be combined into one 
internally statically scheduled RTOS task.  This will allow a more 
efficient use of system processor resources and the implications of 
this on overall system efficiency can be studied.  Methods such as 
quasi-static scheduling could be used. 

5. SOFTWARE 
Our experiments with co-design methods and tools indicate that 
the methodology is sound and that sophisticated DSE is possible.   
However, for many applications, which are mostly implemented 
in software on a well-understood platform, this approach may 
both be too hardware-centric, and require too much additional 
effort from system and software architects to be the best 
methodology. 

Alternative approaches that might be considered are the use of 
rapid platform prototyping, to provide a ‘real’ or realistic HW 
base on which to run application software, or higher-level 
software abstractions, including virtual prototyping.   VCC is a 
kind of virtual prototype; other alternatives are the linking of 
high-level processor and hardware models using C/C++ and 
variations such as SystemC.     We have already mentioned 
approaches of the second kind such as Virtio, VAST, and Axys.   
Rapid prototyping suffers from relatively poor observability and 
controllability, although able to run huge amounts of system data 
and very large testbenches.  In addition, rapid prototyping 
demands that the software tasks be relatively close to final 
implementation in order to run with the RTOS, middleware and 
Hardware-dependent Software on the platform rapid prototype.   
While credible late in a design project, it is often not suitable 
early in design (even for derivative design where most of the SW 

is based on reused components).   The virtual prototyping 
approaches still are more suited to HW-centric designers. 

An alternative approach is to link the HW and SW worlds in a 
way that stays within the SW modelling and development 
environments used by SW architects.  This includes simulators 
available within Integrated Development Environments offered by 
RTOS vendors (for example, VxSim within VxWorks offered by 
Wind River), and looking for projections of underlying platform 
characteristics within SW modelling and code generation 
approaches.  The latter includes both SDL (the ITU-T language 
often used for communications protocols) and UML (the Unified 
Modelling Language supported by the Object Management Group 
(OMG)). 

Although the OMG is evolving UML to support real-time 
extensions and related areas of need in its 2.0+ UML standards 
efforts, (including adding action semantics, additional software 
component support, and modelling of performance, schedulability 
and time), there are still some key areas lacking [8].    The two 
areas which need additional work are platform service 
descriptions, where platforms consist of ‘stacks’ of offered 
services layered on underlying HdS and hardware; and better 
support for mapping as a refinement approach moving from high-
level software models to detailed implementations, via manual or 
automated code generation. 

Further work in this direction is likely over the next several years 
as the traditional HW-based system design and SW-based high-
level SW modelling worlds collide. 

6. CONCLUSIONS 
In this paper we have talked about a number of platform-based co-
development approaches, spanning a variety of co-design and co-
verification methods and tools. 

What is the likely future of these methods?  It seems likely that as 
additional platforms are defined in a variety of product domains 
(wireless and wired communications being a strong opportunity, 
especially at the consumer end), extensive methods for Design 
Space Exploration during platform creation will be required.   By 
characterising platforms abstractly and statistically, derivative 
design will be less risky and require less extensive system level 
simulation or virtual prototyping.   Given a derivative design 
process that concentrates mainly on the fit of a design to the 
platform computing and communications resources, hardware-
based rapid prototyping will substitute for SW-based simulation 
in the derivative verification process.  Thus co-verification will 
become increasingly hardware-based. 

Finally, projections of platform characteristics into SW modelling 
and automated code generation approaches will allow more 
optimal SW development processes to be used by more and more 
SW designers, leading to increases in productivity and true 
optimising SW synthesis that bring some of the HW flow 
productivity to the SW world. 

It is also possible that in the future, breakthroughs in system 
design methodology may not come only from tools and models, 
but from the nature of the architecture itself.  We see that in 
modern processors, it is often vital to co-design the CPUs and the 
compilers, in order that the concurrent hardware resources offered 
by multiple processors can be effectively exploited by the 
software whose access to those resources is mediated by the 



compiler.   In a similar fashion, new architectural concepts, to be 
effectively exploited by systems designers, may need to be co-
developed with the system design tools and methods so that 
advanced architectural features have practical methods to use 
them.   This may require, in the design space exploration methods 
discussed herein, development of new measurement methods and 
their direct support by hardware and software monitors built into 
the platform itself. 
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