
TACO: Rapid Design Space Exploration for Protocol Processors

Seppo Virtanen, Johan Lilius, Tero Nurmi and Tomi Westerlund

Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland

seaavi@utu.fi, jolilius@abo.fi, tnurmi@utu.fi, tovewe@utu.fi

Abstract

To meet the tightening requirements on network hard-
ware, the design of programmable processors with network-
optimized hardware, that is, network or protocol processors,
has recently attracted interest. In this paper we address the
problem of evaluating different architectural configurations
for such processors. The proposed methodology enables easy
and fast experimentation with different protocol processor
hardware architecture configurations to estimate their per-
formance characteristics at early stages in the design pro-
cess. We conclude the paper with an example of designing
processors using the methodology.

1 Introduction

At the moment increasing demands are put on network
bandwidth and throughput requirements, and on the speed
with which new devices can be put on the market. Using cur-
rent standard techniques (general purpose microprocessors,
ASIC’s) these goals are difficult to reach simultaneously.

One solution to this problem that has recently attracted
interest is the design of programmable processors with net-
work-optimized hardware, that is, network or protocol pro-
cessors. The challenge in protocol processor design is to find
an architecture that is a good compromise between a general
purpose processor and a custom, protocol-specific processor
(ASIC): ideally the architecture should be programmable,
and at the same time optimized for a family of protocols
and tasks required in their processing.

In our protocol processor design framework TACO (Tools
for Application-specific hardware/software CO-design) [16]
we have developed tools and methods for helping the de-
signer in specifying, simulating, evaluating and synthesizing
a certain type of protocol processors, TACO processors [17].
The starting point in our design flow is a high level appli-
cation description or specification. We let the development
of the application software guide the processor design work
so that the processing requirements of the target application
determine the hardware architecture of a protocol processor.
The approach is quite different from what is found in most
commercial protocol processors available today, which are
most often multiprocessors with high performance general
purpose processing cores as the computing elements.

In this paper we present an approach to exploring the de-
sign space for protocol processors based on the TACO frame-
work. With design space exploration we mean evaluating
the quality of a design in terms of hardware architecture, ap-
plication software, or a combination of both. This analysis
is performed based on quality metrics specified by the target
application; the metrics could typically be a combination of
acceptable ranges of values for power consumption, chip size
and allowable clock cycle duration. The hardware design
space we consider is three-fold; design decisions are needed
for the types of hardware blocks to be used, the number of

such blocks, and the connections between them. Within this
design space we first need to find a set of hardware architec-
tures that are able to perform the required tasks correctly.
Only a subset of these architectures will be able to function
within the timing constraints set by the protocol processing
application. Of these, again only a subset is feasible in terms
of manufacturing costs, power consumption and circuit size.

The techniques presented in this paper reduce the
amount of work needed in both setting up and carrying out
evaluation experiments of different protocol processor hard-
ware configurations, especially in terms of estimating their
performance characteristics at early stages in the design
process. TACO processors are simulated using a SystemC
model, their physical parameters are estimated in a Mat-
lab model and they are synthesized using a VHDL model.
The TACO protocol processor architecture, SystemC sim-
ulator and Matlab estimation model themselves have been
presented in previous work [12, 16, 17, 18]; therefore in this
paper we limit ourselves to only giving a short update on
the development status of these models.

The rest of the paper is organized as follows: after an
overview of related work we give a brief introduction to the
different research directions within the TACO project, i.e.
the protocol processor architecture and the system level sim-
ulation and estimation models. Then we present our design
methodology and its support for design space exploration.
Finally, we conclude the paper with results of an experiment
in design space exploration using the presented method.

1.1 Related Work

Currently two main branches for domain specific processor
design methodologies can be identified:

1. Behavioral HDL based modeling flows For exam-
ple in [4] a methodology is presented for designing a complex
communication chip using behavioral VHDL as a starting
point. In [13] a methodology called PRCLIB (parameter-
ized re-usable component library) is proposed for construct-
ing SoC’s by specifying different hardware configurations of
RTL level synthesizable and parameterizable IP blocks from
a library, and exploring the design space for such SoC’s.

2. Abstract specification based modeling flows
With a trend towards increasing system complexities, this
type of flows are constantly gaining in popularity. The idea
is to start with a very abstract system description and then
to incrementally refine this specification to contain more and
more architectural details. In [1] an OCAPI [15] description
of system behavior is used as a starting point in a design
methodology for an ethernet packet decoder. In [10] a Y-
chart based design methodology and its use for design space
exploration is presented. In the Y-chart methodology the
performance of a selected architecture is analyzed for a given
set of applications. As a result of this analysis the designer

receives performance data, based on which decisions and de-
sign choices can be made to the architecture. The process is
repeated iteratively until a satisfactory architecture for the
target set of applications is found.

The TACO design methodology fits for the most part into
the second category; our VHDL component development has
followed more the conventions of the first category. There
are similarities between the flows outlined in the second cat-
egory above and the TACO flow, as one might expect: in
TACO we work in a specific problem domain, it being pro-
tocol processing. In the TACO flow the hardware archi-
tecture is also represented as a specification and simulation
model written in a high level language, but only prior to
synthesis. And, lastly, from the high level simulations we
obtain performance data such as clock cycle requirements
and module utilization (in addition to the verification of cor-
rect processor functionality). However, our approach is very
much library-based and allows extensive component re-use
for both simulation and synthesis. Since we do not develop
all modules in our models from scratch every time the actual
hardware design times in our flow are quite short.

As a major difference to the flows in the second catogory,
we develop TACO processor models in three different devel-
opment environments at the same time: we have a model
for system-level simulations written in SystemC, a model
for estimating physical parameters (e.g. processor area and
power consumption) at the system level written in Matlab,
and a model for synthesizing architectures written in VHDL.
The models are highly parameterizable, and hence top-level
description files for a given architecture can be automati-
cally generated for all three models using a single hardware
design tool. We will present such a tool later in this paper.

1.2 TACO Processor Architecture

The TACO protocol processor architecture is based on the
transport triggered architecture (TTA) [5, 14]. In TTA pro-
cessors data transports are programmed and they trigger
operations - traditionally operations are programmed and
they trigger transports. A TTA processor is formed of func-
tional units (FU’s) that communicate via an interconnection
network of data buses, controlled by an interconnection net-
work controller unit. The FU’s connect to the buses through
modules called sockets.

A functional unit has input and output registers. FU
operations are executed every time data is moved to a spe-
cific kind of FU input registers, the trigger register. Each
FU has one such register. Each functional unit in a TACO
processor performs a specific protocol processing task, and
each FU has been designed to be able to complete the exe-
cution of its function in one clock cycle. The FU operations
can be, among others and depending on the application to
be implemented, bitstring matching, counting, timing, com-
parisons and random number generation. Figure 1 shows
the functional view of one possible TACO protocol proces-
sor architecture for processing ATM cells. As can be seen
in figure 1, there can be more than one of each kind of FU’s
in a TACO processor.

TTA’s are in essence one instruction processors, as in-
structions only specify data moves between functional units.
Thus, the instruction word of a TTA processor consists
mostly of source and destination addresses of sockets called
socket ID’s. The socket ID’s are transported on ID buses
from the interconnection network controller. There are as
many ID buses as there are data buses in the interconnection
network. Upon finding its socket ID on one of the ID buses,
a socket opens the connection between a FU and the cor-
responding data bus on the interconnection network. The
maximum number of instructions (i.e. data transports) that
can be carried out in one clock cycle is equivalent to the

Network Controller
Interconnection

MMU

 Matcher2

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

memory
Program

FIFO

Matcher1

Compare2

Counter2

HEC

Compare1

output socket
Input and

connections

Data
memory

Counter1

Generic Registers

Modified TTA

Figure 1: A TACO protocol processor for ATM.

number of data buses in the interconnection network.
To reduce clock cycle length, TACO processors have a

four-stage pipeline with pipe stages fetch (fetch instruction
from program memory), decode (decode source and destina-
tion socket addresses and dispatch them onto the ID buses),
move (move data from an FU output register to an FU input
register) and execute (execute FU operations). The TACO
processor architecture is presented in detail in [17].

There are nowadays quite a few processor architectures
designed and optimized for protocol processing, both as re-
sults of academic research and industrial product develop-
ment. In the next few paragraphs we will go through the
approaches we see most relevant to this work.

In [11] a protocol processor architecture optimized for
internet protocols is proposed. The emphasis in the opti-
mization is on the handling of the state table. The proces-
sor contains a special unit to handle jumps efficiently. In
contrast the TACO processor is more like a pipelined pro-
cessor. The programmer has to schedule the jumps. In
[7] another programmable protocol processor architecture is
proposed. This processor is designed for packet reception
and pre-processing, i.e. delivering packet payloads to the
host network processor. Here the idea is that each layer
of the protocol is processed in a separate stage. The data
flow is thus organized according to layers. In our approach
something similar could be achieved by having one dedicated
interconnection bus for each layer in the protocol stack.

The Intel IXP 1200 family and the Motorola C-5 are
typical examples of modern commercial network processors.
Most commercial protocol processors available today are
multiprocessors with high performance general purpose pro-
cessor cores as the computing elements. For example the
Intel processors are built of a StrongArm microprocessor
core and six programmable multithreaded “microengines”,
and the Motorola processors of a standard RISC core, 16
programmable “channel processors” and embedded copro-
cessors for table lookup, buffer memory and queue man-
agement. Compared to these, our approach has more in
common with application specific processors (ASIP) in that
we try to provide hardware implementations of frequently
occurring operations. However, in contrast to ASIP, our
hardware operations encapsulate much more functionality
than the 2-3 assembler instructions typically found in ASIP
operations.

FunctionalUnitMatcher

Compare

Counter

Timer

GenReg

 . . .

CRC

FIFO

RandomGen

MMU

HEC

FuBaseSC_MODULE

NetControl SocketManager

Socket

OutSocket

TriggerSocket

InSocket

Figure 2: SystemC simulator class hierarchy. Arrows in-
dicate inheritance (arrow head points to parent class), and
lines indicate association.

1.3 The System-level Simulation Framework

To be able to rapidly evaluate different processor architec-
tures designed for executing the same algorithm we have
constructed an object oriented system-level protocol pro-
cessor simulation framework. It is implemented as a library
of components written in SystemC. The component library
contains implementations of functional units, sockets, inter-
connection buses, and the program dispatch logic. Using
this library it is possible to construct cycle accurate simula-
tors of TACO processors.

A TACO simulator is constructed by inserting and con-
necting modules to the processor with a few C++ instruc-
tions in the SystemC sc main function. By connecting we
mean creating sockets, assigning socket addresses, and con-
necting sockets to buses. An example of SystemC code re-
quired to connect a functional unit to the system is given in
figure 6. Such code can also be automatically generated by
a tool (discussed later).

The level of abstraction used in the TACO simulator im-
plementations is heterogenous in the following sense: the
inter-module communication is handled at the RTL level,
whereas the internal functionality of the modules is imple-
mented as higher level C++ using SystemC’s fixed bitstring
length data types (e.g. sc uint<32>, 32-bit unsigned inte-
ger). The motivation for the use of heterogenous abstraction
in the simulator implementations is that since we know the
execution time (in cycles) for each module in the processor
(based on VHDL synthesis of the individual modules), we
can use high-level C++ inside the modules as long as we
insert the correct amount of cycle delays into each module.

Since the functional units in a TACO processor (or more
generally, in a TTA processor) have a very similar interface,
we utilize inheritance in the simulator as seen in figure 2.
This is done by gathering the behavior that is the same for
every functional unit into a parent class, and placing only
the additions to this port/signal configuration required by
individual modules to the child classes. The approach has
obvious benefits: the code is more compact and readable
(the interface code is not repeated multiple times), there
are less errors to debug (only additions to the interface are
coded) and adding new functional units to the SystemC
component library is faster (most FU’s in our protocol pro-
cessors differ only in the internal implementation, not the
physical interface). For more details on the SystemC simu-
lation framework and its implementation, see [16] and [18].

1.4 The Physical Estimation Model

The Matlab model for estimating physical characteristics of
TACO protocol processors is implemented as scripts and
functions in Matlab’s M-language. The model contains a

set of equations for estimating delay, area and power con-
sumption. The Matlab protocol processor model has been
introduced in earlier work [12]. It has been updated since
to support estimation of power consumption and pipe stage
delay. Similar approaches for modeling system level physi-
cal characteristics have been presented in e.g. [2, 6], but our
estimation model has been extensively optimized to support
the TACO protocol processor architecture.

The cycle time of a TACO architecture instance is de-
fined by the delay produced by the slowest pipeline stage.
The delay is calculated for a given technology generation
(in this case 0.35 µm). Recall that TACO processors have a
four-stage pipeline with pipe stages fetch, decode, move and
execute. Our delay model assumes that the slowest pipeline
stage is either the move or the execute, because the logic
depth of the decode stage is shorter than in the execute stage,
and the (on-chip) memory access time can be assumed to be
small in our case.

Move stage delay It is assumed that when socket IDs
are sent to the corresponding input and output sockets the
output driver of the sending FU drives the signal on the bus.
The signal is received in the receiving FU’s input register,
either in an operand or a trigger register. Thus, the move
stage delay is defined as a combined driver/bus delay from
an output register to an input register.

The principle used in calculating the move stage delay
is shown in figure 3: the move stage delay is proportional
to the distance between two FUs. In this architecture the
distance can be approximated with an equation

FUdistance = d(N
2

)e
√
areaFU + total widthbuses,

where N is the total number of FUs around the buses,
areaFU is the area of the largest FU and total widthbuses
is the total width of the bus structure. For total widthbuses
it is assumed that the area required by the sockets and
drivers/repeaters on silicon levels fits under the metal bus
structure.

The move stage delay is then defined as RLC wire delay
[9] and takes also into account the possible need of repeaters.
The maximum length for global wires without the need to
use repeaters is defined as [19]

Lc = 2th[(1 + α)ρ
√
εkε0cKc]

−1,

where t and h are thicknesses of the conductor and the
dielectric, α is a return/signal path resistance ratio (we have
α = 1), ρ is metal resistivity and Kc is a fringing factor for
wire capacitance.

Execute stage delay The execute delay equals a single
gate delay multiplied by the worst case logic depth of a signal
path in an FU. Using the Matlab model we have been able
to conclude that the execute stage delay sets the cycle time
for TACO processors in the 0.35 µm technology generation.
This is due to the large logic depths in the TACO FU’s.
However, in future technology generations this will change
due to diminishing wires. The physical estimation model
will then have to be modified accordingly.

Area estimation In area estimations the Matlab model
adds up the total area of the functional units (i.e. combina-
torial logic) and the area for the bus structure (incl. drivers
and sockets). The timing constraint used for area estima-
tions is 1.20 · fmin

clock, in which fmin
clock is the minimum clock

frequency requirement for running the target algorithm on
the target architecture (the value is obtained from SystemC
simulations). The 20% increase is inserted to ensure ade-
quate processing performance.

Reg

FU A

S+D

S+D Reg

FU B

BUSES

Figure 3: Move stage delay. The delay consists of socket
delays and the bus wire delay including the sending socket’s
driver. S indicates a socket, D a driver and Reg a register.

After establishing the delay constraint the wire dimen-
sions and/or repeaters in the global bus are set up so that
the delay formed in the bus is shorter than the execute stage
delay. The delay constraint determines the size (width and
length) and thus the area of a logic gate. The area for the
bus structure depends on the number of buses and the wire
widths of the buses. Also the number of FU’s has an ef-
fect on the size of the bus structure: the more there are
FU’s the longer buses are needed and hence the bus struc-
ture area increases. The number of gates in an FU is es-
timated by Rent’s rule; we have used the value 0.464 for
Rent’s exponent p as suggested in [6] for inner structures of
microprocessors.

Also the inter-gate wiring is taken into account in the
area estimations. A method for estimating the area of a logic
gate is defined in [3]. However, it doesn’t take into account
neither the power distribution network nor the clock tree.
To compensate, we increase the resulting logic area by 20%.

Power estimation The dynamic power consumption is
defined by the capacitance of the logic gates and inter-
gate wiring as well as global bus structure including
driver/repeater capacitance and wire capacitance, power
supply voltage (3.3 V), cycle time and switching activity of
electrical nodes in different logic units (FUs) and bus drivers.
The supply voltage is the key factor to overall power con-
sumption, but it is pre-defined by the technology used (e.g.
0.35 µm).

The designer can affect dynamic power consumption
mostly by preferring designs that operate on lower clock
frequencies. This way the driving ability requirements for
gates are less stringent and therefore gates can be smaller.
Minimum gate size is defined by the technology used. How-
ever, the timing requirements of the application may not
allow the use of minimum size gates. By co-analyzing the
results from SystemC simulations and Matlab estimations
the designer should be able to find a power-efficient archi-
tecture configuration that satisfies the timing requirements
of the application.

2 Design Methodology

In this section we present a protocol processor design flow in
which a gate-level synthesized model of a protocol processor
is derived from a high level application description using a
set of tools that enable rapid architecture design, simulation,
physical parameter estimation and hardware synthesis. Fig-
ure 4 gives an overview of the design flow we suggest. It is
to be noted that the flow is not a completely automated pro-
cess; rather it is a set of consecutive procedures the designer

application specification
protocol processing

Analysis of

Information on
required

functionality / modules

Sequential assembler
for virtual processor

Assembly of VHDL
model from comp. lib.

Protocol processor

Synthesis and
verification

Changes
needed

Synthesize component

Create VHDL

module
description of new

Insert operation
cycle count

into SystemC model

description of new
Create SystemC

module

Bus utilization
information

data transport statistics
Register to register

All modules
exist in TACO

libraries?

Yes

No

SystemC simulation

Correct Functionality?
No

Yes

Physical parameter
estimation in Matlab

Matlab estimation results

Dynamic power
consumption estimate

quality
Analysis of design

Design OK

from modules in library

SystemC model
construction

SystemC simulation results

Clock constraint from
total cycle count

Processor area estimate

Insert module phys.
data (e.g. logic depth)
into Matlab model

Figure 4: Protocol processor design flow.

needs to follow and complete. The designer is required to
make certain design decisions along the way, and to evaluate
the quality of solutions found by means of combining and
evaluating results from e.g. simulations and physical param-
eter estimation.

2.1 The Design Flow

In the design of optimized protocol processors one of the
most important tasks in our view is to identify frequently
occurring protocol processing operations that vary little be-
tween different protocols and could be implemented in hard-
ware to increase execution speed and reduce code size. The
reduction in code size follows from these operations becom-
ing primitive instructions of the processor (i.e. the opera-
tions become functional units of the processor). The opera-
tions are currently identified in an ad-hoc manner, that is,
by reading protocol specifications, but in another line of re-
search we are currently seeking ways of making this process
more formal and to at least some extent automated. The

identification of these operations is an ongoing process and
a key foundation of the TACO processor design flow.

Our design flow starts from a high-level protocol pro-
cessing application specification. The specification can be
of any kind, e.g. written or executable. This specification
is analyzed to determine the types of operations and data
transports needed to perform the application (first two boxes
in figure 4). For the time being, this analysis is carried out
manually. Once the required operations to perform the ap-
plication have been determined, they are compared to oper-
ations already existing in the TACO module library. Cur-
rently the library contains a multitude of implementations
of different operations, e.g. CRC, bitstring matching, timers,
counters, Boolean logic units and so on.

If the operations are found in the library or they can
conveniently be performed by using the existing operations
in the library, the library will remain unchanged. If how-
ever the application requires an operation of a type that
is not directly mappable to the modules available in the
TACO library, the operation is added to the library. This
is done by creating SystemC and VHDL modules of the
operation as seen in the dashed box at the top right of
figure 4. Once the VHDL module has been synthesized,
the physical parameters of the module are inserted into the
Matlab estimation model. These characteristics can be e.g.
the logic depth of the module and the ratio of combina-
torial vs. non-combinatorial logic in the module. Also the
SystemC module description needs to be updated with in-
formation from the VHDL synthesis: the number of clock
cycles required to perform the operation needs to be spec-
ified, because to speed up simulations the SystemC model
uses high-level C++ functions inside the modules. There-
fore additional delay statements are needed in the SystemC
module description to represent the execution time.

After establishing that all the operations in the applica-
tion can be performed by modules available in the TACO
libraries, the application specification is refined until it be-
comes a list of consecutive data moves between elementary
TACO protocol processing operations (i.e. operations offered
by the modules in the TACO libraries). A data move of this
kind could be e.g. to move counter output value to the input
of a greater-than operation. The list of data moves is the
sequential assembler code for a virtual processor shown in
figure 4. By virtual processor we mean a TACO processor
with one functional unit of each needed type and one bus in
the interconnection network.

The assembler code for a virtual processor specifies the
types of functional units needed to perform the target ap-
plication and is thus used as a basis for deriving different
architecture instances. This is the SystemC model construc-
tion phase in figure 4. An experienced designer can derive
a set of good candidates for architecture instances quickly,
since such a designer is able to predict what kinds of effects
adding or removing buses or functional units to/from the
architecture will probably have on overall performance.

To exploit the increased parallelism offered by concur-
rent data transports in TACO processors the virtual assem-
bler code of the target application must be organized in an
optimal manner for each given architecture instance. This
optimization will in the future be carried out by a compiler
that takes in program code written in a high-level language
and yields optimized assembler code. However, currently
the virtual assembler code is optimized manually for each
architecture instance. After the architecture instance has
been constructed and the application assembler code has
been prepared for the specific architecture instance, the sys-
tem can be simulated (SystemC simulation in figure 4).

If the SystemC simulation reveals incorrect or otherwise
unwanted functionality in the processing of the application,
the program code and/or the hardware architecture need to
be modified. It is up to the designer’s experience to decide

at this point whether to modify only the application code
or the entire system.

If the designer is satisfied with the overall system func-
tionality in the SystemC simulation, the physical charac-
teristics of the simulated architecture are estimated in the
MatLab model with some of the SystemC simulation results
as parameters (as shown in figure 4).

As the last system-level phase in our design flow the Mat-
lab and SystemC results are combined and analyzed to de-
termine whether the system meets the requirements of the
original specification. The number of clock cycles it takes for
the given application to be performed on the simulated ar-
chitecture is obtained from the SystemC simulation, and an
estimate of the worst case clock cycle using a certain man-
ufacturing technology (0.35 µm in this paper) is obtained
from the Matlab estimator. By multiplying the number of
required clock cycles with the estimated cycle time the de-
signer knows already at the system level whether the archi-
tecture instance is able to fulfill the timing requirements of
the application. If the design was not able to perform the
given application correctly or not able to match the design
constraints (timing, power, area), the designer returns to
earlier stages in the flow as indicated in figure 4.

Once the designer has found a satisfactory architecture
instance in terms of functionality, performance and physi-
cal characteristics, it is possible to generate a synthesizable
VHDL model for the processor using the VHDL modules in
the TACO libraries. The VHDL model generation requires a
top-level VHDL file to specify the components of the proces-
sor and their interconnections. The file is constructed either
manually or using a design tool like the one in figure 5 (dis-
cussed below). After the synthesis the architecture and the
program code are verified by post-synthesis simulation.

If all requirements are fulfilled the design is ready for
placement and routing. In these steps detailed information
of the physical placement of the functional units and inter-
connections between and within them are derived. Success-
ful completion of the routing finishes the design process.

2.2 Turn-around time

Since parts of the SystemC simulator are implemented in
high-level C++ as described earlier, simulations run very
fast. One run of a packet processing loop can be performed
in less than a second or at most a few seconds on a stan-
dard PC. Also the MatLab model executes fast, a typical
execution takes 3-4 seconds on a standard PC. Thus the de-
sign iteration cycle (from box SystemC model construction
to box Analysis of design quality in figure 4) is also fast.

The most time consuming process in the flow is syn-
thesizing the architecture. Depending on the optimization
constraints, already the gate-level VHDL synthesis of an ar-
chitecture instance can be an overnight process on a typical
workstation (we use Cadence Ambit Buildgates 4.0 and Al-
catel 0.35 µm technology libraries on a SUN Ultra 10 work-
station). The process of placement and routing consumes
even more time. The time-wise benefits of rapid system-level
design space exploration are obvious, and well supported by
our design flow.

2.3 Design tool

To speed up the setup of SystemC simulations, Matlab es-
timations and VHDL synthesis for rapid design space ex-
ploration, we have implemented an architecture design tool
that creates top level SystemC, Matlab and VHDL files for
our models. Figure 5 shows the design tool with a design
of a possible TACO protocol processor. The tool in fig-
ure 5 does not show all the hardware modules needed in a
TACO processor; the ones that are not shown are the same
for all TACO architecture instances and are automatically
produced into the top level files by the design tool.

Figure 5: Protocol processor design tool.

Once the designer has “drawn” the architecture in the
program window, clicking the Generate button in the tool
generates the necessary files for simulation, physical param-
eter estimation and synthesis. Figure 6 shows the SystemC,
Matlab and VHDL code for Matcher1 of figure 5 generated
by the design tool. Note that the Matlab code actually cov-
ers all the Matchers in the architecture (more generally, each
functional unit type has its own line, on which the informa-
tion is given for all of the FU’s of that kind). Also note that
the SystemC and VHDL code excerpts also contain code for
modules and signals that are used by other functional units
as well, such as buses, system clock and the interconnec-
tion network controller; these have been left into the code
examples for purposes of clarity.

As can be seen in the generated SystemC code, many
hardware modules (like the sockets) are automatically in-
stantiated and connected to other modules by the simulator.
This reduces significantly the complexity of the SystemC
code needed to be generated by the design tool.

The first version of the tool is implemented in Delphi
2.0 (object Pascal). We intend to develop the tool further
by separating the code generation functionality into a text-
mode code generator and making the graphical part act only
as a front-end to this generator. To make this possible, we
will specify a simple architecture representation language.
The generator then converts files in this language into the
top level files required by the three design environments.
We also intend to enhance the graphical front-end to act
as a front-end for SystemC simulations and Matlab esti-
mations and thereby to support analysis of simulation and
estimation results. The front-end will be enhanced to sup-
port register-to-register type programming, and a feature
for component library browsing is in the plans. This feature
would be used for reviewing component characteristics di-
rectly in the tool. The goal is to make at least the front-end
platform-independent, and therefore the next version will be
transferred to Java.

3 Design Example

To test the interaction capabilities of our tools and methods
we decided to apply the design methodology to a part of
ATM AIS (Alarm Indication Signal [8]) processing. We im-

plemented an algorithm that analyzes incoming ATM cells
to find out if a cell is a regular user cell, an empty cell or an
AIS operations and maintenance (OAM) cell. In the follow-
ing we describe the design steps to reach six TACO architec-
ture instances with the necessary functionality to perform
AIS processing. We estimate their physical parameters and
evaluate their capability to perform in a 622 Mbps ATM net-
work, where a new cell arrives for processing approximately
1.47 · 106 times per second. Finally, of the simulated and
estimated architectures we choose two best candidates for
gate-level synthesis to verify the results of our system-level
simulations and physical parameter estimations.

Our analysis of ATM AIS processing resulted in adding
a HEC (ATM header error check) unit into the 0.35 µm
SystemC and VHDL component libraries and the Matlab
model. After this addition, all operations needed for per-
forming the target application were available for use in the
libraries. The sequential assembler code for a virtual pro-
cessor was then constructed as explained in section 2.2.

Next we started to explore different architectural alter-
natives. The architectures were specified and the top level
description files (as in figure 6) were generated using the
design tool described in section 2.3. Each instance was then
simulated in SystemC and the physical parameters were es-
timated in Matlab. The results from both environments are
presented in tables 1 and 2.

The different architecture instances were constructed by
varying the number of buses and functional units in the pro-
cessor. The first architecture instance we explored was the
one at the top of table 2. This trivial case is basically an
implementation of the virtual processor for which the se-
quential assembler code was previously constructed. After
simulating and estimating this instance we started to incre-
mentally add complexity to the instances. As can be seen in
table 2, increasing the number of functional units and buses
in the architecture decreases the minimum required clock
speed. As our final instance, we simulated and estimated
the last architecture listed in table 2. As we expected based
on our previous experiments in e.g. [17], it turned out to
be the least clock cycle consuming architecture of those we
explored for the target algorithm.

The bus utilization data from the SystemC simulation
(table 1) indicates the amounts of data transports on the
interconnection network buses. Each data bus can be con-
sidered to have a data transport slot during each clock cy-
cle. Therefore, the total number of available data transport
slots (move slots in table 1) is nslots = nbuses ·ncycles, where
ncycles is the number of clock cycles required to perform the
algorithm. In the trivial case with only one bus, bus utiliza-
tion is naturally 100% (the only bus is used all the time until
the algorithm finishes). The more interesting result is that
with double FU’s the bus utilization remains very high when
adding more buses. This is a major contributor to overall
processor performance as seen in table 1; as the number of
functional units of the same kind increases, more buses are
needed to fully utilize the functional units and thus gain
even more in processing speed. This utilization information
is also used in the Matlab model to estimate the total energy
consumed during the execution of the algorithm.

The SystemC simulation of an architecture instance
yields a minimum value for the required clock frequency of
the processor, fmin

clock. This value multiplied by 1.2 (as ex-
plained in section 1.4) is then used as a timing constraint
in the Matlab model when estimating the area use and the
power consumption of the given architecture instance. By
joining the bus utilization results from SystemC simulation
and power analysis results from Matlab estimation we reach
an estimate of the energy consumed by a task running in
the processor. The Matlab estimation results are shown in
table 2.

Co-analyzing the results from SystemC and Matlab re-

a) Generated SystemC code c) Generated VHDL code
sc clock clk("clock",20); signal highway : tacobus matrix(2 downto 0);
NetControl nc("NetCtrl1"); signal matcher1 T, matcher1 O1 : std ulogic vector(w-1 downto 0);
nc.clk(clk); signal matcher1 O2, matcher1 R : std ulogic vector(w-1 downto 0);
Bus* bus1 = new Bus("Bus1"); signal matcher1 IStm1 act, matcher1 ISopm1 act : std ulogic;
Bus* bus2 = new Bus("Bus2"); signal matcher1 ISodm2 act, matcher1 OSrm1 act : std ulogic;
Bus* bus3 = new Bus("Bus3"); --matcher 1
Matcher* m1 = new Matcher("Mtchr1", clk); TM1: input socket
bus1->insertOperand(m1); generic map(idi matcher1tm1, 1, 0, 1, w, "111")
bus2->insertOperand(m1); port map(clk, rst, Glock, squash, dst id, highway, matcher1 IStm1 act, matcher1 T, open);
bus3->insertOperand(m1); OPM1: input socket
bus1->insertData(m1); generic map(idi matcher1opm1, 1, 0, 1, w, "111")
bus2->insertData(m1); port map(clk, rst, Glock, squash, dst id, highway, matcher1 ISopm1 act, matcher1 O1, open);
bus3->insertData(m1); ODM1: input socket
bus1->insertTrigger(m1); generic map(idi matcher1odm1, 1, 0, 1, w, "111")
bus2->insertTrigger(m1); port map(clk, rst, Glock, squash, dst id, highway, matcher1 ISodm2 act, matcher1 O2, open);
bus3->insertTrigger(m1); matcher1: matcher fu
bus1->insertResult(m1); port map(clk, rst, Glock, matcher1 T, matcher1 O1, matcher1 O2,
bus2->insertResult(m1); matcher1 IStm1 act,matcher1 ISopm1 act,
bus3->insertResult(m1); matcher1 ISodm2 act, matcher1 OSrm1 act, matcher1 R, a);
nc.initialize(); RM1: output socket

generic map(ido matcher1rm1, 1, 0, 1, "111")
b) Generated Matlab code port map(clk, rst, Glock, squash, src id, matcher1 R, matcher1 OSrm1 act, highway, open);
matcher = [2 4 129 0.5]

Figure 6: Code examples. These excerpts represent the code generated for Matcher1 of figure 5. The Matlab code is a vector
with the following fields: [#FUs #FU registers #I/O wires %Clk nodes].

vealed that in two and three bus configurations the double-
FU instances require larger area than the single-FU- in-
stances. This is not surprising; in the 0.35 µm technology
logic gates are still relatively large and the more there are
functional units the more there are gates which increase the
total area.

The cases with only one bus need further analysis. As
seen in table 1, these instances have the most stringent clock
frequency demands. The Matlab estimations showed that
minimum-sized gates are too slow in these cases. The first
instance (single-1) needed gates of scaling factor 3 and the
second one (double-1) gates of scaling factor 2 to reach the
target clock frequency. Because an average size gate was
used for all FU logic, this difference in gate scaling factor
was enough to compensate the difference in the number of
FU’s between these two instances. For all the rest architec-
ture instances minimum-sized gates could be used in order
to meet the target frequency constraints and thus only the
number of FU’s affected the logic area.

The same analysis can be extended to average power
consumption, or more precisely, task energy consumption
(see table 2). Task energy is the total amount of energy
needed to execute a task once and is directly proportional
to the average power consumed by the corresponding archi-
tecture instance. For the two 1-bus instances, the single-FU
instance consumes more energy than its double-FU coun-
terpart; for the two- and three-bus instances the situation
is vice versa. The total task energy consumed is smaller for
single-FU instances in the case of two or three buses and
nearly the same for both FU configurations in the case of
one bus. This is because double-FU instances have much
longer cycle time and thus the energy consumed during one
clock cycle is larger for all double-FU instances. Only in
the case of one bus, the bigger number of clock cycles for
single-FU instances compensates the smaller energy/cycle.

We decided to run two of the six architecture instances
through gate-level synthesis to verify our simulations and
estimations. We chose to synthesize single-3 because of its
excellent power and area characteristics, and double-3 be-
cause of its ability to operate at a low clock frequency (this
allows the most cost-efficient co-circuitry and the best chip
manufacturing yield). The gate-level synthesis yields the
logic area of an instance as seen in table 2 (actual column)
for the two synthesized instances. As the Matlab model is
capable of estimating both the logic area and the entire pro-
cessor area, we have included also the logic area estimates in
table 2. As can be seen in table 2, the logic area estimates

Archit. Exec. Req. Move Unused Bus
instance cycles clock slots slots util.

single-1 121 178 MHz 121 0 100%
single-2 68 100 MHz 136 15 89%
single-3 49 72 MHz 144 42 71%
double-1 90 132 MHz 90 0 100%
double-2 53 78 MHz 106 1 99%
double-3 36 53 MHz 108 2 98%

Table 1: Worst case clock frequencies and data bus utiliza-
tions. Single-2 indicates the use of one FU of each needed
type and two buses in the interconnection network, double-3
the use of two FU’s of each needed type and three buses.

Archit. Energy Logic area µP area
instance estim. estimate actual estimate

single-1 187 nJ 2.08 mm2 - 2.63 mm2

single-2 74 nJ 0.89 mm2 - 1.20 mm2

single-3 58 nJ 0.89 mm2 0.87 mm2 1.27 mm2

double-1 179 nJ 1.88 mm2 - 2.39 mm2

double-2 105 nJ 1.41 mm2 - 1.96 mm2

double-3 81 nJ 1.41 mm2 1.25 mm2 2.09 mm2

Table 2: Estimated task energies, estimated and actual logic
areas, and estimated processor area.

and the actual values are quite close. Thus, we were able
to verify that the system level simulations and estimations
provided reliable results and that the suggested methodol-
ogy was well applicable to this kind of system design.

4 Conclusions

In this paper we have presented a design space exploration
methodology for a family of protocol processors. By adher-
ing to the conventions of this methodology, a synthesizable
processor model and its program code are developed with
an initial application specification as a starting point. Our
method reduces the amount of time and work needed in both
setting up and carrying out evaluation experiments of dif-
ferent protocol processor hardware configurations, especially
in terms of estimating their performance characteristics at
early stages in the design process.

The results obtained in this paper showed that if there
is more than one bus in an architecture instance, the in-
stances with single-FU configuration are more area- and
power/energy-efficient than their double-FU-counterparts.
However, in future technology generations global (bus) wire
delay will be more dominant in the overall delay. Then it
might be reasonable to have a reserve for delay constraint if
the delay formed in the bus starts to exceed or at least equal
the delay formed in FUs when a signal is going through the
ever faster logic path. The logic gates are also smaller in
the future, and the size (and also the number) of repeaters
along the global bus relatively increases. Thus we may face
a situation where stringent delay constraints can’t be met
with physical or architectural design alone but rather with
architectural/physical co-design. The instruction-level par-
allelism (ILP) in instances that have more than one of at
least some types of functional units will be an important
help for the designer: the less demanding timing constraints
of ILP instances provide a solution to the problem. More co-
herent architectural-physical co-design will be needed in the
future in order to meet the specifications of the increasingly
demanding target applications.

With the proposed techniques the designer is able to tell
already at early stages of the design work whether an archi-
tecture will be able to perform the target application within
a given set of constraints, such as clock frequency, power
consumption and circuit area. This information is obtained
by combining and analyzing results from system level simu-
lation and physical parameter estimation. Once design fea-
sibility has been verified at the system level, tools can be
used to generate a gate-level synthesizable VHDL model of
the architecture configuration.

Acknowledgements Seppo Virtanen gratefully acknowl-
edges financial support for this work from the Nokia foun-
dation and the HPY research foundation.

References

[1] M. Attia and I. Verbauwhede. Programmable gigabit ether-
net packet processor design methodology. In Proceedings
of the European Conference on Circuit Theory and De-
sign (ECCTD’01, pages III:177–180, Espoo, Finland, Au-
gust 2001.

[2] H. Bakoglu. Circuits, Interconnections and Packaging for
VLSI. Addison-Wesley, 1990.

[3] T. Bednar, R. Piro, D. Stout, L. Wissel, and P. Zuchowski.
Technology-migratable ASIC library design. IBM Journal
of Research and Development, 40(4):377–386, July 1996.

[4] R. Clauberg, P. Buchmann, A. Herkersdorf, and D. J. Webb.
Design methodology for a large communication chip. IEEE
Design and Test of Computers, pages 86–94, July-September
2000.

[5] H. Corporaal. Microprocessor Architectures - from VLIW to
TTA. John Wiley and Sons Ltd., Chichester, West Sussex,
England, 1998.

[6] B. Geuskens and K. Rose. Modeling microprocessor perfor-
mance. Kluwer, 1998.

[7] T. Henriksson, U. Nordqvist, and D. Liu. Specification of a
configurable general-purpose protocol processor. In Proceed-
ings of Second International Symposium on Communica-
tion Systems, Networks and Digital Signal Processing, pages
284–289, Bournemouth, UK, July 2000.

[8] International Telecommunication Union, Telecommunica-
tion Standardization Sector. ITU-T Recommendation I.610:
B-ISDN Operation and Maintenance Principles and Func-
tions, 1993.

[9] Y. I. Ismail and E. G. Friedman. Effects of inductance on the
propagation delay and repeater insertion in VLSI circuits.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 8(2):195–206, April 2000.

[10] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vis-
sers. A Methodology to Design Programmable Embedded Sys-
tems, volume 2268 of LNCS, pages 18–37. Springer-Verlag,
2001 (to appear).

[11] Y. Ma, A. Jantsch, and H. Tenhunen. A programmable pro-
tocol processor architecture for high speed internet proto-
col processing. In Proceedings of the 18th IEEE NORCHIP
Conference, pages 212–216, Turku, Finland, November 2000.

[12] T. Nurmi, S. Virtanen, J. Isoaho, and H. Tenhunen. Physi-
cal modeling and system level performance characterization
of a protocol processor architecture. In Proceedings of the
18th IEEE NORCHIP Conference, pages 294–301, Turku,
Finland, November 2000.

[13] R. S. Shelar, S. Nath, and J. S. Nanaware. Parameterized
reusable component library methodology. In Proceedings
of the 26th EUROMICRO Conference (EUROMICRO’00,
Maastricht, The Netherlands, September 2000.

[14] D. Tabak and G. J. Lipovski. MOVE architecture in digital
controllers. IEEE Transactions on Computers, 29(2):180–
190, February 1980.

[15] S. Vernalde, P. Schaumont, and I. Bolsens. An object
oriented programming approach for hardware design. In
IEEE Computer Society Workshop on VLSI’99, Orlando,
FL, USA, April 1999.

[16] S. Virtanen and J. Lilius. The TACO protocol processor sim-
ulation environment. In Proceedings of the 9th International
Symposium on Hardware/Software Codesign (CODES’01),
pages 201–206, Copenhagen, Denmark, April 2001.

[17] S. Virtanen, J. Lilius, and T. Westerlund. A processor archi-
tecture for the TACO protocol processor development frame-
work. In Proceedings of the 18th IEEE NORCHIP Confer-
ence, pages 204–211, Turku, Finland, November 2000.

[18] S. Virtanen, D. Truscan, and J. Lilius. SystemC based object
oriented system design. In Proceedings of the 2001 Forum
on Design Languages (FDL’01), Lyon, France, September
2001.

[19] L. R. Zheng, B. Li, and H. Tenhunen. Global interconnect
design for high speed ULSI and system-on-package. In Pro-
ceedings of the 12th Annual IEEE ASIC/SOC conference
(ASIC/SOC’99), Washington DC, USA, September 1999.

