
1

TACO: Rapid Design Space
Exploration for Protocol Processors

Seppo Virtanen Johan Lilius Tero Nurmi Tomi Westerlund

Turku Centre for Computer Science (TUCS)
Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland

seppo.virtanen@utu.fi, johan.lilius@abo.fi, tero.nurmi@utu.fi, tomi.westerlund@utu.fi
http://users.utu.fi/seaavi/ http://www.tucs.fi/

Introduction
z TACO goal: develop tools, methods and a design

flow for rapidly specifying, simulating, evaluating
and synthesizing protocol processors.

z TACO building blocks:
zProcessor architecture
zSystemC simulation framework
zMatlab estimation model
zVHDL synthesis model

2

TACO Processor Architecture
z Based on TTA architecture

z Processors constructed of functional units, sockets, interconnection
buses, control blocks and memory

z Data moves trigger operations

z Functional units of processor

z Optimized for protocol processing

z Alike in structure and connectivity

z One instruction: move

z FU’s and interconnection
network can be designed
independently as long as both
follow socket interface spec.

Design flow
z Derive gate-level synthesized protocol

processor models from a high level
application description or specification

z Use TACO tools to rapidly:
z design architecture instances
z simulate instances
z estimate physical characteristics of instances
z analyze instance quality based on simulation and

estimation results
z generate a synthesizable VHDL model

from the system level.

3

Design flow

Analysis of
specification

List of
required modules

Create new module
(SystemC, Matlab, VHDL)

Sequential assembler
for virtual processor

Architecture instance
model composition

Simulation and physical
parameter estimation

Synthesizable
processor model

Application analysis

z Identify frequently appearing operations in the
protocol processing application
z e.g. CRC, Boolean, counting, timing, matching
z These become native instructions of processor

z Compare to existing modules in VHDL and
SystemC module library

z Add module into library if operation can not
be performed with existing modules, and
create a Matlab representation of it

4

SystemC Simulation framework
z Implementations of FU’s, sockets, interconnection

buses, dispatch logic written in SystemC 1.0.1
z Heterogenous level of abstraction

z Inter-module communication at RTL level
z Internal functionality of modules at higher levels

z Object oriented
techniques used:
z Inheritance
zPolymorphism

SystemC Model Details

z Parent class encompasses all mutual
features of subclasses, both functionality and
interfaces

z Leaf classes contain distinctive additions to
functionality and interface -> leaf classes
remain relatively simple

z Benefits: more compact and readable code,
fewer errors, design of new FU’s is faster

5

Matlab estimation model

z Set of scripts and functions in M-language
z equations for delay, area, power estimation

z Model optimized for TACO architecture
z Delay: estimate pipe stage lengths

z in 0.35 µm Execute stage determines clock cycle

z Area: estimate based on delay constraints
(gate / repeater size)

z Power/task energy: estimate based on supply
voltage, cycle length, cycle count

VHDL synthesis model

z Hybrid model: common operations of modules
modeled in structural VHDL, module-specific
parts modeled in behavioral VHDL

z High code reusability
z e.g. functional units: replace module-specific part

(module interface structure remains umodified)
z e.g. module duplicates: only module identification

information needs to be changed

6

Design flow

Analysis of
specification

List of
required modules

Create new module
(SystemC, Matlab, VHDL)

Sequential assembler
for virtual processor

Architecture instance
model composition

Simulation and physical
parameter estimation

Synthesizable
processor model

Virtual Processor Assembler
z Virtual processor = a TACO processor with

one interconnection bus and one of each
required type of functional units.

z After establishing that required modules exist:
zRefine application specification until it becomes a

list of consecutive data moves between modules
ze.g. move counter result to input of a Boolean unit

z List of consecutive moves = virtual processor
assembler code

z virtual assembler used as basis for deriving
architecture instances

7

Design flow

Analysis of
specification

List of
required modules

Create new module
(SystemC, Matlab, VHDL)

Sequential assembler
for virtual processor

Architecture instance
model composition

Simulation and physical
parameter estimation

Synthesizable
processor model

Design Iteration Cycle
z Construct SystemC simulation model of an

architecture instance based on virtual ASM
zEither manually or using the Design Tool
zApplication code must be tuned for the instance

z Verify functionality through simulation
z Provide simulation results to Matlab model for

estimating physical characteristics
z Analyze simulation and estimation results
z Explore more instances or proceed to VHDL

model synthesis

8

Design Tool

z Visual processor design
z Generates SystemC,

Matlab and VHDL top files
z Currently only in Windows
z Next version in Java

z simulation front-end
z component browsing
z programming
zSupport for analysis of

simulation results

Generated Code

9

Turn-around Time

z SystemC simulations and Matlab estimations
are very fast
Î Design iteration at the system level

is fast
z Design steps from logic synthesis onwards

consume most of the design time
z Logic synthesis setup is fast however: the

VHDL code is generated by the design tool

Design Experiment

z Protocol Processor for ATM AIS processing in
a 622 Mbps network

z Alcatel 0.35 µm standard cell library
z A HEC FU had to be created into SystemC

and VHDL component libraries
z Different architecture instances constructed

by varying number of buses and FU’s
z 1,2 or 3 buses
zSingle or dual FU’s for required operations

10

Results of Experiment
z Add buses and/or FU’sÎ reduce clock cycles
z Add FU’s Î consume more energy and area,

use buses more efficiently
z Add buses Î consume less energy

(in the 0.35 µm technology generation)

Conclusions
z TACO system level simulations and estimations

provided reliable results when compared to post-
synthesis simulation results

z The TACO design methodology supported this
kind of application-specific system design and
system level design space exploration well

z Combining results of system level simulation and
system level physical parameter estimation
gives the designer reliable design feasibility
feedback at early stages of the design process

11

Design flow

Analysis of
specification

List of
required modules

Create new module
(SystemC, Matlab, VHDL)

Sequential assembler
for virtual processor

Architecture instance
model composition

Simulation and physical
parameter estimation

Synthesizable
processor model

