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Introduction
z TACO goal: develop tools, methods and a design 

flow for rapidly specifying, simulating, evaluating 
and synthesizing protocol processors.

z TACO building blocks:
zProcessor architecture
zSystemC simulation framework
zMatlab estimation model
zVHDL synthesis model
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TACO Processor Architecture
z Based on TTA architecture

z Processors constructed of functional units, sockets, interconnection 
buses, control blocks and memory

z Data moves trigger operations

z Functional units of processor

z Optimized for protocol processing 

z Alike in structure and connectivity

z One instruction: move

z FU’s and interconnection 
network can be designed 
independently as long as both 
follow socket interface spec.

Design flow
z Derive gate-level synthesized protocol 

processor models from a high level 
application description or specification

z Use TACO tools to rapidly:
z design architecture instances
z simulate instances
z estimate physical characteristics of instances
z analyze instance quality based on simulation and 

estimation results
z generate a synthesizable VHDL model 

from the system level.
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Application analysis

z Identify frequently appearing operations in the 
protocol processing application
z e.g. CRC, Boolean, counting, timing, matching
z These become native instructions of processor

z Compare to existing modules in VHDL and 
SystemC module library

z Add module into library if operation can not 
be performed with existing modules, and 
create a Matlab representation of it
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SystemC Simulation framework
z Implementations of FU’s, sockets, interconnection 

buses, dispatch logic written in SystemC 1.0.1
z Heterogenous level of abstraction

z Inter-module communication at RTL level
z Internal functionality of modules at higher levels

z Object oriented 
techniques used:
z Inheritance
zPolymorphism

SystemC Model Details

z Parent class encompasses all mutual 
features of subclasses, both functionality and 
interfaces

z Leaf classes contain distinctive additions to 
functionality and interface ->  leaf classes 
remain relatively simple

z Benefits: more compact and readable code, 
fewer errors, design of new FU’s is faster
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Matlab estimation model

z Set of scripts and functions in M-language
z equations for delay, area, power estimation

z Model optimized for TACO architecture
z Delay: estimate pipe stage lengths

z in 0.35 µm Execute stage determines clock cycle

z Area: estimate based on delay constraints 
(gate / repeater size)

z Power/task energy: estimate based on supply 
voltage, cycle length, cycle count

VHDL synthesis model

z Hybrid model: common operations of modules 
modeled in structural VHDL, module-specific 
parts modeled in behavioral VHDL

z High code reusability
z e.g. functional units: replace module-specific part 

(module interface structure remains  umodified)
z e.g. module duplicates: only module identification 

information needs to be changed
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Virtual Processor Assembler
z Virtual processor = a TACO processor with 

one interconnection bus and one of each 
required type of functional units.

z After establishing that required modules exist:
zRefine application specification until it becomes a 

list of consecutive data moves between modules
ze.g. move counter result to input of a Boolean unit

z List of consecutive moves = virtual processor 
assembler code

z virtual assembler used as basis for deriving 
architecture instances
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Design Iteration Cycle
z Construct SystemC simulation model of an 

architecture instance based on virtual ASM
zEither manually or using the Design Tool
zApplication code must be tuned for the instance

z Verify functionality through simulation
z Provide simulation results to Matlab model for 

estimating physical characteristics
z Analyze simulation and estimation results
z Explore more instances or proceed to VHDL 

model synthesis 
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Design Tool

z Visual processor design
z Generates SystemC, 

Matlab and VHDL top files
z Currently only in Windows
z Next version in Java

z simulation front-end
z component browsing
z programming
zSupport for analysis of 

simulation results

Generated Code



9

Turn-around Time

z SystemC simulations and Matlab estimations 
are very fast
Î Design iteration at the system level

is fast
z Design steps from logic synthesis onwards 

consume most of the design time
z Logic synthesis setup is fast however: the 

VHDL code is generated by the design tool

Design Experiment

z Protocol Processor for ATM AIS processing in 
a 622 Mbps network

z Alcatel 0.35 µm standard cell library
z A HEC FU had to be created into SystemC 

and VHDL component libraries
z Different architecture instances constructed 

by varying number of buses and FU’s
z 1,2 or 3 buses
zSingle or dual FU’s for required operations
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Results of Experiment
z Add buses and/or FU’sÎ reduce clock cycles
z Add FU’s Î consume more energy and area, 

use buses more efficiently
z Add buses Î consume less energy

(in the 0.35 µm technology generation)

Conclusions
z TACO system level simulations and estimations 

provided reliable results when compared to post-
synthesis simulation results

z The TACO design methodology supported this 
kind of application-specific system design and 
system level design space exploration well

z Combining results of system level simulation and 
system level physical parameter estimation 
gives the designer reliable design feasibility 
feedback at early stages of the design process
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