
Breaking Down Complexity for Reliable System-Level Timing Validation

Dirk Ziegenbein, Marek Jersak, Kai Richter, and Rolf Ernst

Institute for Computer and Communication Network Engineering
Technical University of Braunschweig, Germany
{ziegenbein, richter, jersak, ernst}@ida.ing.tu-bs.de

Abstract

Complex embedded systems consist of hardware and software
components from different domains, such as control and signal pro-
cessing, many of them supplied by different internal and external
source (e. g. IP). The system architect faces the challenge to inte-
grate, optimize and validate the resulting heterogeneous systems.
The analysis of the whole system is currently limited to simulation
or emulation, since formal validation is only available for some
subproblems. While simulation still seems viable for the validation
of the system function, it can not be reliably applied to the valida-
tion of non-functional system properties, in particular timing. In
this paper, we propose a validation methodology which augments
existing cosimulation-based design approaches with formal timing
analysis capabilities. This methodology is based on thedecomposi-
tion of the validation task into the analysis of individual processes
and resources for which formal analysis techniques are known and
on thecompositionof the obtained results in order to obtain system-
level timing information. Furthermore, it is shown how the analyz-
ability of system timing can be systematically improved by slightly
changing the system implementation.

1 Introduction

The complexity of embedded systems has steadily grown in recent
years. Fueled by increasing device integration capabilities of sili-
con technology, more and more functions can be implemented on
a single chip leading to systems-on-chip (SoC). Another dimen-
sion of the growing complexity is the resulting heterogeneity of
application and architecture. Due to different functional character-
istics (e. g., reactive or transformative), the SoC application is typi-
cally captured using several domain-specific languages with possi-
bly fundamentally different underlying models of computation [3].
Typical SoC architectures consist of a combination of different pro-
cessor types, specialized memories, and weakly programmable or
dedicated HW components connected using complex on-chip net-
works consisting of buses, switches or point-to-point connections.
This variety of different architectural components is a result of spe-
cialization and optimization which is necessary in order to achieve
the required performance at low cost and low power consumption.
Adding to this heterogeneity is the reuse of intellectual property
(IP) components which is inevitable in order to reach the design
productivity required to meet time-to-market constraints.

The main challenge in the design of these complex heteroge-
neous SoC is the reliable system validation in order to allow a safe
integration of the different system parts. First, there is the well
known problem of system function validation. System function
validation determines if the implemented function equals the speci-
fied function (equivalence checking) or if certain system properties
are met (model checking). There are formal function validation
tools, but they are typically only applied to components, whereas
simulation is the preferred means to system-level function valida-
tion. Here, simulation pattern development is the main challenge
for designers. System function validation has been in the focus
of EDA and software engineering for years, and there are many

methods supporting different stages of the design process includ-
ing executable specifications and rapid prototyping.

There is, however, a second validation problem concerned with
the validation of non-functional system properties such as tim-
ing, required memory size, and power consumption. While the
ideas presented in this paper are valid for the verification of non-
functional properties in general, the focus of the paper is on timing
which is typically most critical for correct system behavior. Tradi-
tionally, timing validation was mostly in the focus of safety criti-
cal or high availability systems where formal quality metrics were
applied. In all other systems, simulation and prototyping were as-
sumed to cover timing analysis as a side effect of system function
validation. Specific timing analysis was at most used on an abstract
level such as in statistical communication network analysis.

This situation is changing with increasing system complexity.
Never before, technical systems with similar heterogeneity and
complexity had to be built with a comparable productivity. Such
a complex system, composed by a system-level ”cut-and-paste”
approach, exposes a confusing variety of communication and run-
time interdependencies, which cannot be fully overseen by anyone
in a design team. Both upper and lower run-time and communi-
cation bounds and their combinations contribute to this complex
behavior. Decades of work in real-time operating systems has re-
vealed run-time anomalies [4] which are not intuitive and lead to
risks that are not known to most designers.

There are approaches to extend simulation to performance anal-
ysis of complex heterogeneous systems. Most prominent is VCC
from Cadence [1]. VCC requires sufficient input patterns to cover
all corner cases. Unfortunately, it is not clear how to combine com-
ponent corner cases in order to obtain system corner cases. An ex-
ample is a process generating maximum event bursts and bus loads
at minimum execution time which is normally not of interest in
component design. If the system integrator is aware of this partic-
ular problem, he/she might be able to add new simulation patterns,
but only if the system is sufficiently simple. If we add the software
architecture complexity with APIs, drivers, and operating system
components, then it becomes obvious that system-level corner case
identification is no practical option.

The current practice of reusing component corner cases in sys-
tem design does, therefore, not scale to large systems. Hence,
VCC and related simulation tools are inappropriate for the upcom-
ing problems of complex system performance analysis. It must be
emphasized that the situation is different for system function vali-
dation, where simulation still seems viable.

Alternative approaches using statistical or typical performance
data are increasingly unsafe in their inability to detect memory
overflow and transient overload leading to data dependent transient
system errors which are extremely difficult to debug and threaten
system quality.

In this context, formal analysis techniques are an appealing al-
ternative for validation of non-functional system properties. In con-
trast to simulation, formal analysis ensures complete corner case
coverage by nature. With a carefully selected level of system and
component abstraction, the results are conservative, i. e. they are
guaranteed under all circumstances. Formal analysis approaches

capture process and system properties using parameterized math-
ematical models. Depending on their intended use, such models
account for instruction execution, critical program paths, schedul-
ing influence, or process interaction and support the derivation of
conservative bounds on process core execution times, system re-
sponse times, or required memory size.

Unfortunately, system complexity and heterogeneity are ma-
jor obstacles for the system-wide application of formal validation
methods. As shown in Figure 1 and presented in an overview of
existing work in Section 2, reliable validation of system timing is
only available for systems with either a low application complex-
ity (e. g., single process) or a low architectural complexity (e. g.,
single resource). However, Figure 1 also shows that todays hetero-
geneous SoC have a high complexity with respect to application as
well as architecture. The lack of reliable timing validation for this
class of systems has already lead to costly delays in product deliv-
ery. Recent popular examples can be found in automotive, mobile
communication, and set-top box industries.

Architectural Complexity

Ap
pl

ic
at

io
n

C
om

pl
ex

ity

Complex
Heterogeneous

Platforms
& SoCsSingle

Resource

Single
Process

reliable
 timing validation

unreliable
 timing validation

Figure 1: Availability of reliable timing validation methods with
respect to application and architectural complexity

This paper proposes a validation methodology which tackles
the problem of system timing validation and, in particular, ad-
dresses the following two critical questions:

• How can we break down the system complexity in order
to use existing formal validation tools and techniques for
system-level timing analysis of heterogeneous SoC?

• How can we implement systems in order to increase their an-
alyzability?

The paper is organized as follows. After an overview of exist-
ing approaches to timing analysis on various levels of abstraction
in Section 2, the proposed validation methodology is described in
Section 3. This section first presents the basic ideas of our approach
before combining them to a complete validation flow. Then, a sys-
tematic approach to adapt a system implementation for increased
analyzability is informally presented in Section 4. The paper is
concluded by a summary and an outlook on future work.

2 Related Work

Formal timing validation methods can be divided into process-level
and system-level timing analysis. The former methods analyze
a single process mapped to a resource of the target architecture
and yield the core execution time of the process, whereas the lat-
ter methods analyze resource sharing effects and yield process re-
sponse times for given core execution times.

For process-level timing analysis, thesum-of-basic-blocks
model [12] is established as a standard approach. Here, the overall
task execution time is the sum of all basic block execution times
multiplied by the corresponding execution count for each of the

basic blocks. Both values, time and count, are intervals represent-
ing the worst case and best case bounds. As a result, the overall
execution time is an interval, too.

Many other approaches to task execution time analysis are also
based on the analysis granularity of basic blocks or single basic
block transitions [7] or require complex modifications to execu-
tion time determination [15]. Very few approaches like [8] also
consider more fine-grain influences of complex processor architec-
tures, e. g. pipelines and super-scalar machines. The major draw-
back of such detailed approaches is state-space explosion.

The SYMTA (SYMbolic Timing Analysis) tool suite [22] ex-
tends the sum-of-basic-blocks approach by raising the analysis
granularity from basic blocks to task segments which are sequences
of basic blocks having a single, input data independent control
flow across basic block boundaries. Due to the raised granularity,
the number of points where worst case assumptions (e. g., empty
pipeline or cash flush) have to be made is reduced leading to tighter
bounds.

Additionally, SYMTA allows to specify task execution contexts
by providing information on input data that influences input data
dependent control structures. This way, execution paths are se-
lected and task segments can be merged even further. As a result,
not only a single task execution time interval but also a set of com-
paratively narrow execution time intervals, one for each context,
can be given.

For system-level timing analysis, there is a huge amount of
work, mainly in the domain of real-time operating systems. These
approaches capture system timing in a closed form using timing
equations and appropriate solution algorithms which reflect the
used resource sharing (scheduling) strategy. Example approaches
include Liu and Layland who proposed a preemptive priority-
driven scheduling to guarantee deadlines for periodic hard real-time
processes [14]. They considered a static (Rate Monotonic) and a
dynamic (Earliest Deadline First) priority assignment and provided
a formal analysis framework for both. In [9], Kopetz and Gruen-
steindl proposed TTP (time triggered protocol) for communication
scheduling in distributed systems and presented an analysis. TTP
implements the TDMA (time division multiple access) schedul-
ing strategy. Both contributions assume a periodic activation of
processes. Recent extensions allow periodic activation with jitter,
e. g. [19], and arbitrary deadlines and burst [11] for static-priority
scheduling. Sprunt et. al. [20] analyze the influence of sporadic
process activation.

Unfortunately, all mentioned approaches assume a single co-
herent scheduling strategy for a given system, whether single or
multi-processor. Very few exceptions consider special cases of
more complex architectures, such as [16] analyzing response times
for static priority process scheduling combined with a TDMA bus
protocol. However, there is no general analysis approach capable
of handling heterogeneity with respect to resources and scheduling
strategies as required for complex SoC. Furthermore, it is doubt-
ful that such a general approach providing a closed-form solution
for arbitrarily complex system architectures can be found, mainly
because of the highly complex dependencies of various influences
on system-level timing in such systems. Rather, it seems to be
more promising to systematically combine the existing process-
and resource-level tools and techniques in order to obtain system-
level timing parameters. Such a compositional approach is de-
scribed in the following two sections.

3 Methodology

In this section, the proposed methodology for reliable timing val-
idation of complex, heterogeneous SoC is presented. Please note
that this methodology is not intended to be a complete method-
ology on its own but rather augments existing cosimulation-based
methodologies with the capability to reliably validate system tim-
ing. This means that functional validation as well as synthesis is
performed using established methods and tools from the cosimula-
tion world (e. g., VCC [1] or CoWare [2]).

A major obstacle for a systematic system-level timing valida-
tion of complex SoC is their inherent architectural heterogeneity
as well as the lack of coherency between the different languages
used in a multi-language specification. Thus, a requirement for
our methodology is a homogeneous model of the complete system
which provides a coherent formal underpinning for the validation
of system timing. This system model has to support the incremental
back annotation of timing information to allow a stepwise analysis
flow. Furthermore, the model should be capable of representing the
system at various levels of detail in order to cope with complexity.
These requirements are discussed in more detail in Section 3.1.

The proposed methodology assumes a given system implemen-
tation, i. e. the application has already been mapped to the target ar-
chitecture and scheduling methods and parameters have been cho-
sen. The architecture selection as well as the mapping and schedul-
ing decisions result from a design exploration step, either manu-
ally, using existing cosimulation-based tools (e. g., VCC [1]), or
based on heuristics or multi-objective optimization (e. g., [6]). Such
explorations are usually based on rough performance estimates to
quickly reject infeasible and non-optimal implementations out of
the host of possibilities. Then, each of the remaining candidates
is analyzed in detail using our formal methodology. Finally, such
detailed results can be fed back to the exploration step in order to
further reject candidates. As a result, only a small set of pareto-
optimal [6] implementations will remain. As a side effect, the de-
tailed performance analysis results help to improve the mentioned
estimation techniques.

The basic idea of our methodology is to decompose the prob-
lem of system-level timing analysis in order to be able to use ex-
isting tools or approaches from industry and academia. The results
of these tools are then combined in order to obtain system-level
timing parameters such as end-to-end latencies. The decomposi-
tion divides the influences on system-level timing into two orthog-
onal classes. The first class is based on individual process analysis
which assumes exclusive resource access for each process, whereas
the second class is based on individual resource analysis which
considers resource sharing influences. The decomposition is en-
abled by abstraction of the process interaction (for individual pro-
cess analysis, see Section 3.2) and of the resource interaction (for
individual resource analysis, see Section 3.3). The orthogonality
of these concepts allows the composition of the obtained results.
The validation flow of the proposed methodology is described in
Section 3.4.

3.1 Abstract System Model

In this section, we informally introduce aspects of a system model
which is well suited for system-level timing analysis. Such a sys-
tem model has to satisfy two key requirements. On one hand, it is
imperative to abstract all application and architecture details which
arenot necessary for system-level timing analysis. This allow to
expose in a suitable form those system properties which are re-
quired for the application of formal analysis techniques. On the
other hand, it must be possible to provide tight, yet conservative
worst- and best-case bounds for all relevant properties. System-
level timing analysis techniques have to consider intervals to be
able to reliably validate timing [21].

Application System-level timing analysis is based on an operat-
ing system view of the application. Therefore, a suitable applica-
tion representation are processes with input and output ports com-
municating via channels. No functional details have to be main-
tained. Instead, the process function is abstracted into a small set
of properties. For processes activated by incoming data (or events,
signals), the amount of data necessary for activation has to be cap-
tured. For time-driven processes, timer properties (e. g. period, jit-
ter) have to be represented. Furthermore, the amount of communi-
cated data per activation at each input/output port has to be captured
to allow determining buffer loads and communication delays.

Architecture The architecture is reasonably represented by ab-
stract processors, busses, and their interconnection structure. Pro-

cessors are characterized by their type, clock speed, cache size and
strategy, and busses by width and speed, respectively. Memory
is usually associated with processors. In addition to this purely
hardware-oriented view, operating systems including bus and other
drivers are also part of the architecture. Here, the most important
properties are scheduling strategies and bus (arbitration) protocols,
including parameters like context switching time, header length,
etc.

Mapping and Scheduling Mapping is the assignment of pro-
cesses and channels to computation and communication resources,
respectively. Scheduling decisions include the assignment of prior-
ities (in case of a priority scheduler) or slot times (in case e. g. of a
round-robin scheduler) for processes and channels.

Environment and Timing Constraints For system-level timing
analysis, timing models for arriving data (or events, signals) from
the environment are required. These provide information about ac-
tivation frequency of processes at the system inputs. End-to-end
latency constraints are required to enforce process execution.

The above requirements for an abstract system representation
for system-level timing analysis are met by the recently introduced
SPI (SystemProperty Intervals) model [24], which we use as the
formal basis for our work. The SPI model is the basis of the SPI
workbench, an open, international research effort to enable inte-
gration of various tools and techniques for system-level modeling,
exploration, analysis and validation of non-functional system prop-
erties.

3.2 Process Interaction Abstraction

We have identified two key elements to reduce application com-
plexity. The first is to transform non-functional properties of an
application into a representation which is independent of domain-
specific input languages. This has two benefits: on one hand
system-level timing analysis techniques that work on this repre-
sentation are applicable to specifications in all languages for which
an appropriate transformation is available. On the other hand and
more importantly, multi-language specifications are transformed
into a homogeneous representation. This allows analysis across
former language boundaries.

Language-specific transformation rules can be defined for spec-
ifications written in languages based on formal models of computa-
tion (MOCs) such assynchronous data flow[10] or state charts[5].
Due to the well-defined coordination semantics of formal MOCs,
once defined these rules can be automatically applied to capture
the relevant application properties. For specifications written in
implementation languages, e. g.C, property extraction relies on de-
signer knowledge but can be supported by code-analysis tools such
as SYMTA [21]. For applications available as IP (intellectual prop-
erty), the relevant application properties have to be part of the IP
specification.

The second key element to reduce application complexity is to
first analyze each process and channel separately. In other words,
resource sharing effects are not considered at this point. For pro-
cesses, conservative bounds on the core execution time (i. e. with-
out interrupts) are needed. In case of a software implementation,
static path-analysis combined with simulation of basic blocks and
conservative combination of basic block timing results provides
conservative bounds [13]. Tighter bounds can be obtained if sim-
ulation results are combined for segments with a single feasible
path across basic block boundaries [21]. If a processor has a cache,
worst- and best-case cache states at the boundaries of single-path
segments also have to be considered.

For processes implemented in hardware, timing of sequential
circuits is provided by synthesis tools, while more complex (com-
binatorial) circuits require designer knowledge, or in case of IP an
appropriate description. For channels, the only information needed
to be able to calculate communication delay is the amount of com-
municated data and the bus propagation delay.

Mapping-dependent properties for processes can be refined to
include communication regions (intervals inside the core execution
time interval, during which the process may be communicating),
exclusive resource access regions or cache usage regions. This in-
formation can be provided if needed during system-level analysis
(Section 3.4).

If distinct process behaviors are identified, then narrower in-
tervals can be obtained for each of them using above techniques
compared to a nondescript process abstraction that combines all
possible behaviors. In Section 3.4 we will show how distinct pro-
cess behaviors can be exploited using context information to obtain
tighter bounds on system properties during system-level analysis.

3.3 Resource Interaction Abstraction

In the preceding section, we demonstrated how process interaction
can be represented by only a few key parameters describing the
externally observable behavior rather than detailed internal func-
tionality. We did so by analyzing each process separately from all
other processes. This was only possible because we ignored re-
source sharing effects.

Now, we will show how to abstract the interaction between the
resources in order to analyze their performance, or more precisely,
the influence of scheduling on the performance of each process.
The same underlying ideas apply to communication resource anal-
ysis, too. However, the parameters are usually simpler than for pro-
cess scheduling analysis. Therefore, we focus on process schedul-
ing.

As mentioned in Section 2, there is no sufficiently general ap-
proach to analysis of complex SoC. However, there exists a host of
work for dedicated sub-problems. Most of the work focuses on the
analysis of processes which share a single resource. Therefore, we
will introduce the procedure for single-resource process scheduling
first.

Regardless of the actual scheduling strategy, all formal schedul-
ing analysis techniques share some key properties. First, they are
based on core execution times as the only process performance
parameter; upper and lower bounds are provided by the individ-
ual process analysis introduced in the previous section. Secondly,
the analysis techniques provide response times for the processes,
i. e. the time between the activation of a process until the time of
completion. And thirdly, they do so by formally capturing and eval-
uating information about the external signals which activate the ex-
ecution of processes.

The external signals determine the system workload. Every
scheduling analysis technique makes assumptions on the system
environment which generates this workload. These assumptions
are the event frequency, and how much data is provided per event.
One can distinguish different types of events, such as the arrival of
different packet types (control or data) in a packet network. The
event frequency, the event types and the distribution in time are the
main environment parameters.

Typically, the numerous input event models used in practice are
classified into four classes (e. g. [17]).

• periodic: events arrive in equidistant periods of time (T)

• periodic with jitter: here, the events arrive generally peri-
odic with the periodT. However, each event may be delayed
within a so called jitter window of sizeJ.

• periodic with burst: here,n (burst size) events with a mini-
mum distance oft (minimum inter-arrival time) arrive within
a periodT

• sporadic: in contrast to all other models, sporadic events –
either burst or not– are not generally periodic. Therefore, only
a minimum inter-arrival timet between two successive events
is given.

Given these models for the input events or signals, scheduling
analysis can be performed for one resource regardless of any other

architecture component in the system. Thus, the event models ab-
stract the resource interaction (step3 in Fig. 2).

Now, we can analyze the scheduling influence for each resource
individually. As a result, we obtain process (and communication)
response times which are annotated back (step4 in Fig. 2) to the
system-level representation.

So far, we only investigated the abstraction of interaction be-
tween individual resources. As mentioned earlier, there is a small
number of approaches to analyze more complex architectures,
e. g. [16, 23]. It is advantageous to treat such multi-component sub-
systems as atomic with respect to performance analysis. Otherwise,
the benefits of the approaches can not be exploited. Clearly, we
have to identify such sub-systems within the overall system archi-
tecture first. Then, we can cluster such sub-architectures, and treat
them in the same way as we treated single resources above. Again,
the only information about the environment of the sub-system are
event models.

3.4 Validation Flow

As already mentioned, process interaction abstraction and resource
interaction abstraction are orthogonal concepts. This leads to the
following basic validation flow (Fig. 2).

1. Process interaction abstraction is performed as described in
Section 3.2 (step1 in Fig. 2).

2. Process performance parameters are back-annotated to the
system model (step2 in Fig. 2).

3. Resource interaction abstraction is performed as described in
Section 3.3 (step3 in Fig. 2).

4. Resource performance parameters are back-annotated to the
system model (step4 in Fig. 2).

In Section 3.3 we showed that event models decouple the in-
teraction of processes on different resources. Of course, as some
point this interaction has to be accounted for.

A process on one resource generates output signals which are
input to another resource. The output of signals or events can also
be captured using event models. In [18], we have shown that these
output event models are within the four input event models in-
troduced above. Furthermore, we provided rules to derive output
event models from the already known performance parameters (in-
put event models and response times). We can easily couple the
performance analyses for individual sub-systems by propagating
event models through the architecture components along paths of
process dependencies (step5 in Fig. 2). An output event model of
one component becomes an input event model for the connected
component. This leads to an iterative procedure consisting of steps
3, 4, and5.

While this is comparatively simple for feed-forward systems,
it is more complex for systems with cyclic event model dependen-
cies. In the presence of process dependency loops, we have no ded-
icated starting point with all event models given. Rather, we have
to make assumptions about the actual parameters of certain input
event models to start the iterative procedure. Furthermore, we have
no dedicated termination point comparable to the system outputs
in purely feed-forward systems. Thus, we have to iterate until all
event models either converge or diverge. Convergence means that
we have found a valid resource interaction abstraction. Divergence
means that such an abstraction cannot be found.

Cyclic process dependencies are not the only source for cyclic
event model dependencies. Due to resource sharing influences, also
functionally independent processes may influence each others tim-
ing, and thus their corresponding output event models. In certain
cases, the superposition of process dependencies and scheduling
dependencies can result in additional cyclic dependencies of the
corresponding event models. However, the impact on the overall
analysis problem is the same as before.

Architectural Complexity

Ap
pl

ic
at

io
n

C
om

pl
ex

ity

1
2

3

4

5

[] [] []

B
[]

[] []

[]

A

B

[]

C

[] []

[]

[]

[]

[]

[]

A
[]

[]

B
[]

[]

C
[]

[]

C A A

P1 P2 []

P3 P4

P1 P2 P3 P4

ESAB

ESAB

ESAB
[]

[]

[]

[]

ESAB

unreliable
 timing validation

reliable
 timing validation

Figure 2: Proposed timing validation methodology

The basic steps1 through5 can be further refined for tighter
bounds by using system-level information to exploit distinct
process behaviors. A useful technique is to modelscenarios
(e. g. ’idle’, ’connect’, ’active’ or ’disconnect’ scenarios in a sim-
ple telephony protocol): only a subset of processes is active in each
scenario, and only a subset of each process’s behaviors is executed.
Process behaviors have to be tagged with information about sce-
narios, in which they can be activated. This reduces the number
of processes to consider and the size of intervals in each scenario
during system-level analysis.

An additional technique to improve analysis results is to sep-
arate qualitatively different activation conditions of one process in
the same scenario, e. g. periodic activation of one behavior and spo-
radic activation of a different behavior. Separate activation condi-
tions often can be expressed using narrower intervals compared to
a superposition of activation conditions.

Finally, in a practical design flow steps3, 4 and5 will be inter-
leaved with steps1 and2 for efficiency reasons. Since mapping-
dependent properties can be provided at various levels of detail, it
is advantageous to initially provide only a basic view, in particular
core execution times, and to defer obtaining more detailed informa-
tion until explicitly asked for. For example, system-level analysis
may ask at some point whether a process can request an exclusive
resource within the 1st millisecond of its execution.

4 Design for Analyzability

So far, we introduced basic concepts and an appropriate validation
flow to analyze performance of complex heterogeneous platforms.
Event model propagation was identified as a key techniques in or-
der to analyze the complex interactions between several resources.
However, as the event model convergence problem in Section 3.4
already indicated, we have not yet discussed all problems related
to event model propagation. In this section, we thus focus on the
event model propagation step (step5 in Fig. 2) in more detail.

So far, we implicitly assumed that the output event model of
one component automatically matches the required input event
model of the connected component. This is not necessarily the
case. Recall that the scheduling strategies and corresponding anal-
ysis techniques determine which input event models are supported
and which are not. Thus, even in the feed-forward case, event
model propagation might fail at some point, since the output and
input event models are incompatible. However, we can find simple
event model interfaces (EMIFs) [17] to overcome such incompati-
bilities.

We introduce the basic idea of event model interfacing using a
simple example. Consider the two processesP1 andP3 in Fig. 2,

which exchange data via event streamESAB. Other processes ad-
ditionally to those shown in the figure can be mapped to both re-
sources. On each resource, a different scheduling strategy is imple-
mented. Let us furthermore assume, that the scheduling strategies
for the two resources have the following properties:

• From the timing analysis ofP1 we know that the output
events are generally periodic with periodT1 but may expe-
rience a maximum jitterJ1 (e. g. resulting from preemptions
by other processes).

• For the timing analysis ofP3, the only available analysis ap-
proaches require a sporadic input event model with a mini-
mum inter-arrival timet3.

Clearly, the two event models can not be coupled directly since they
are basically incompatible (EM1,out =jitter→ EM3,in=sporadic).
However, we are able toderive the requiredparameter values of
the sporadic event modelfrom the knownvalues of the jitter event
model: The minimum inter-arrival time of two successive events
with jitter is the period minus the maximum jitter:t4 = T1− J1.
Instead of propagating the event model (periodic with jitter) itself,
we only capture the key characteristics of the event stream coming
from P1 with respect to the parameters of the input event model
of P3. Thus, t4 = t3. The mentioned parameter transformation
represents the event model interface (EMIF).

Event model interfaces for other event model combinations can
be found similarly [17]. SuchEMIFs substantially enhance the
event model propagation (or coupling) process, although the ac-
tual implementation does not change. Only the design represen-
tation, or more precisely, the event stream representation does. In
other words, modifying the design representation can significantly
increase the analyzability of the overall system. In the next para-
graphs, we will see how slight modifications in the design (or im-
plementation) itself can provide additional analysis capabilities, in
cases where no simpleEMIFs can be found.

Not all event model combinations are interfacable by such
comparatively simpleEMIFs as introduced above. As a
counter example, consider the transformation (EM1,out =jitter→
EM3,in =periodic). It is trivial to prove that no general interface can
be found: The event modelEM3,in=periodic assumes the events to
occur with equal temporal separation, which in general is not the
case sinceEM1,out contains a jitter. Only in the special case when
J1 = 0 anEMIF can be provided.

However, in digital signal processing systems, internal events
are often assumed periodic since the system’s overall input is purely
periodic. But due to resource sharing and/or data-dependent pro-
cess execution times, internal events experience a jitter. To keep

up with periodic models, buffers and timers are widely used to re-
synchronize such events according to the initial period. This shows
that it is generally possible to couple initially incompatible event
models for analysis at the cost of additional system functions. We
refer to these functions as event adaptation functions (EAFs).

The actual functionality of theseEAFs can be derived from the
two event models involved. For the above mentioned simple ex-
ample (EM1,out =jitter→ EM3,in =periodic), theEAF is straight-
forward. A buffer of size 1 and an output issue period ofT3 is
needed. This way, we obtain a periodic output event model for the
EAF. The actual period is simply determined byT3 = T1, which
represents theEMIF to couple the two periodic streams.

In general, the parameters of the timed buffers (buffer size, is-
sue rate, and thebuffering delay) need to be formally derived from
the model transformations. Since this paper focuses on methodol-
ogy, we refer to [17] for the formal background. We introduced
EAFs to couple initially incompatible event streams in cases, when
simple EMIFs cannot be used. Clearly, this comes at the cost
of additional system functions. However, mostEAFs consist of
a buffer and a timer only, usually not stealing too much system
performance. Furthermore, the insertion ofEAFs reflects what an
experienced designer would do in manual design. In contrast, we
showed howEAFs can be generated automatically with the same
quality. This substantially improves design quality with respect
to performance analysis (“Design for Analyzability”), and thus re-
duces the number of re-design cycles and overall design time.

5 Conclusion

In this paper, we have proposed a validation methodology which
augments existing cosimulation-based design approaches with the
capability to formally validate system-level timing. The basic idea
of our methodology is to decompose the problem of system-level
timing validation into the orthogonal concepts of single process
and single resource analysis. This allows to use existing tools or
approaches from industry and academia which are available for
these steps. It has been shown how the results of the applied tools
then can be combined in order to determine previously unobtain-
able system-level timing parameters such as end-to-end latencies.
Furthermore, it has been shown how the analyzability of system
timing can be systematically improved by slightly changing sys-
tem implementation.

While the focus of this paper has been on the validation of
system-level timing for complex SoC, the presented ideas are also
valid for distributed systems such as networked electronic con-
trol units (ECU) in automotive applications. Other non-functional
properties such as power consumption or buffer sizes can be vali-
dated analogously.

We have indicated the use of context information in order to
model certain execution scenarios. A more comprehensive ap-
proach would be the extension of the event models in order to in-
clude context information. This would allow to analyze transitions
between scenarios based on event models.

References

[1] Cadence. Cierto VCC Environment. http://www.cadence.com/-
products/vcc.html.

[2] CoWare.CoWare N2C. http://www.coware.com/cowareN2C.html.

[3] R. Ernst and A. A. Jerraya. Embedded system design with multi-
ple languages. InProceedings Asia South Pacific Design Automation
Conference (ASPDAC ’00), pages 391–396, Yokohama, Japan, Jan-
uary 2000.

[4] R. L. Graham. Bounds on multiprocessing timing anomalies.SIAM
Journal on Applied Mathematics, 17(2):416–429, 1969.

[5] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[6] C. Haubelt, J. Teich, and K. Richter. System design for flexibil-
ity. In Proc. of Design, Automation and Test in Europe Conference
(DATE’02), Paris, France, March 2002.

[7] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-
ing pipeline and instruction cache performance.IEEE Transactions
on Computers, pages 53–70, January 1999.

[8] A. Hergenhan and W. Rosenstiel. Static timing analysis of embed-
ded software on advanced processor architectures. InProceedings of
Design, Automation and Test in Europe (DATE ’00), pages 552–559,
Paris, March 2000.

[9] H. Kopetz and G. Gruensteidl. TTP - a time-triggered protocol for
fault-tolerant computing. InProceedings 23rd International Sympo-
sium on Fault-Tolerant Computing, pages 524–532, 1993.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow.Proceed-
ings of the IEEE, 75(9):1235–1245, 1987.

[11] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-
trary deadlines. InProceedings Real-Time Systems Symposiom, pages
201–209, 1990.

[12] Yau-Tsun Steven Li and Sharad Malik.Performance Analysis of Real-
Time Embedded Software. Kluwer Academic Publishers, 1999.

[13] Yau-Tsun Steven Li and Sharad Malik.Performance Analysis of Real-
Time Embedded Software. Kluwer Academic Publishers, 1999.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment.Journal of the ACM, 20(1):46–
61, 1973.

[15] T. Lundquist and P. Stenström. Integrating path and timing analysis
using instruction level simulation techniques. InProceedings of the
ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems, Montreal, Canada, June 1998.

[16] P. Pop, P. Eles, and Z. Peng. Bus access optimization for distributed
embedded systems based on schedulability analysis. InProc. Design,
Automation and Test in Europe (DATE 2000), Paris, France, 2000.

[17] K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. InProc. of Design, Automation and Test in Europe
Conference (DATE’02), Paris, France, March 2002.

[18] K. Richter, D. Ziegenbein, R. Ernst, L. Thiele, and J. Teich. Model
composition for scheduling analysis in platform design. Insubmit-
ted to Proceeding 39th Design Automation Conference, New Orleans,
USA, June 2002.

[19] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic
scheduling theory: A framework for developing real-time systems.
Proceedings of the IEEE, 82(1):68–82, January 1994.

[20] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for
hard real-time systems.Journal of Real-Time Systems, 1(1):27–60,
1989.

[21] F. Wolf and R. Ernst. Intervals in software execution cost analysis.
In Proceedings 13th International Symposium on System Synthesis,
pages 130–135, Madrid, Spain, September 2000.

[22] F. Wolf and R. Ernst. Execution Cost Interval Refinement in Static
Software Analysis.The EUROMICRO Journal, Special Issue on Mod-
ern Methods and Tools in Digital System Design, 47(3-4):339–356,
April 2001.

[23] T. Yen and W. Wolf. Performance estimation for real-time distributed
embedded systems.IEEE Transactions on Parallel and Distributed
Systems, 9(11), November 1998.

[24] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI –
A system model for heterogeneously specified embedded systems.to
appear in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2002.

