
A Methodology for SoC Top-Level Validation
using Esterel Studio

Lionel Blanc
Esterel Technologies

Twins 1
679 Av Julien Lefèbvre
+33 (0)4 92 02 40 40
lionel.blanc@esterel-

technologies.com

Amar Bouali
Esterel Technologies

Twins 1
679 Av Julien Lefèbvre
+33 (0)4 92 02 40 40
amar.bouali@esterel-

technologies.com

Jérôme Dormoy
Esterel Technologies

Twins 1
679 Av Julien Lefèbvre
+33 (0)4 92 02 40 40

jerome.dormoy@esterel-
technologies.com

Olivier Meunier
Esterel Technologies

Twins 1
679 Av Julien Lefèbvre
+33 (0)4 92 02 40 40

olivier.meunier@esterel-
technologies.com

ABSTRACT
In this paper, we suggest a methodological framework
addressing the System on Chip top-level validation. Our
systematic approach works on a powerful abstraction of IP
blocks called transactional model. We state the
transactional modeling “philosophy”, its benefits, and its
limitations. The methodology is illustrated step by step on a
simplified example. Its effective implementation is realized
within Esterel Studio tool synchronous approach, formal
verification and test generation capabilities. This
methodology is an opportunity to reduce SoC top-level
validation time, increasing confidence through larger and
relevant functional coverage.

Categories and Subject Descriptors
M.1.6 [Design Methods Track]: Testing, test generation
and debugging.

General Terms
Design, Verification.

Keywords
System on Chip, Integration, Validation, Transactional
Model, ATPG, Synchronous Approach, ESTEREL STUDIO,
SYNCCHARTS.

1. INTRODUCTION
When it comes to validating the System on Chip (SoC),
there are two issues to consider. First, we need to verify the
IP cores thoroughly and separately. Secondly, we need to
verify their integration in the system; arduous challenge in

design of very large chips. Indeed, the number of test
vectors to exhaustively test SoC grows exponentially with
the number of components and inputs of the system. Now,
compound behaviors of multiple IP blocks generate huge
state spaces, such that it is humanly impossible to consider
all the test vectors that could cause the design to fail. In this
context, Automatic Test Pattern Generation (ATPG)
constitutes a rationalization of the SoC testing process. The
most widely used approach to generate verification tests
automatically is pseudo-random generation. However,
coverage is often doubtful. Formal methods may be
efficiently applied to generate deterministic test vectors
covering all the possible behaviors rather than a limited and
uncertain range of behaviors [7]. However, behavior
models need to be complete and accurate. Unfortunately, in
the present SoC framework, most of the IP cores design
knowledge remains with the IP provider or designer. Even
though one would have the necessary knowledge, time-to-
market pressure is incompatible with IP core formalization.

From the previous paragraph, it clearly appears that:

�� Apply formal methods to automatically generate test
vectors provides some consistence to the coverage.

�� Due to time-to-market pressure, insufficient IP core
knowledge (and potential combinational explosion),
it is not reasonable to formally prove complex chips.

In this context, the paper suggests a methodological
framework for SoC top-level validation, test-oriented and
based on formal synchronous approach using Esterel
Studio. Esterel Studio development environment provides
behavioral specification, simulation, formal verification,
automatic test generation, coverage analysis and code
generation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

The paper is organized as follows: Section 2 introduces the
simplistic EASY application for methodology illustration
purpose. Section 3 familiarizes the reader with the
synchronous approach. Section 4 presents the
methodology’s different steps and benefits. The

methodology steps are first exercised on the EASY
example. Then we give some guidelines to implement this
methodology on real industrial cases. Finally, Section 5
summarizes the methodology characteristics and presents a
few perspectives.

2. THE “EASY” APPLICATION
In this section, we present a simple system called “EASY”
to illustrate the methodology. The “EASY” example is
composed of:

�� a CPU (embedding software),

�� three IP blocks performing functions. These IP
blocks could represent I/O peripheral, CODEC
components, etc. In a generic way, IP blocks can
be viewed via their registers, i.e. to access a
function one needs to access registers (set ith bit to
1, etc.). IP1, IP2 and IP3 blocks export their
functions via one or two command registers
(Figure 1). Basically, the CPU or a client IP block
can read or write registers and wait for a “done”
event such as a completion interrupt.

CPU

IP1 IP3

BUS

IP2

register

Figure 1: “EASY” example

3. THE SYNCHRONOUS PARADIGMS
ESTEREL [3] and SYNCCHARTS [2] (E&S) synchronous
languages are dedicated to control-dominated reactive
system modeling. These systems exhibit fundamental
differences in comparison with “classical” algorithmic
systems:

�� they have to handle a large set of sporadic and/or
periodic events potentially simultaneous,

�� they have to cope with concurrent behaviors,

�� they have to perform complex synchronizations.

Therefore, E&S introduce preemptions, suspension,
concurrency and hierarchy as native concepts.

These formalisms are founded on a mathematically well-
defined semantic: a relevant abstraction conferring to
design a behavioral determinism and reducing notably

combinational complexity to consider. Obviously, this
abstraction makes a physical sense since a physical
representation compliant with the “abstract” (logical) model
can be derived (hardware circuit translation).

The ESTEREL STUDIO compiler compiles a program into a
Finite State Mealy Machine (FSM). The FSM internal
representation can be either explicit or implicit by means of
Boolean equation systems. This model is the common base
for simulation, code generation, formal verification, and test
generation. Model-checking and test generation are
performed using efficient BDD techniques [4].

ESTEREL STUDIO [1] unifies E&S formalisms (see Figure
2). It provides a design chain without discontinuities from
specification to validated hardware or software code.
Therefore, it is a sound candidate in a top-down co-design
flow [6]. ESTEREL STUDIO provides an automatic test
pattern generator, handling reachable state space (RSS) via
BDDs. The aim is to generate deterministic sequences
ensuring the state coverage completeness, i.e. produce test
vectors in order to cover 100% of the RSS.

C,C++
code

VDHL
code

A? B?

A? O!B? O!

A? B? O!

R?

R?

R?
R?

s0

s2s1

s3

Formal
specification

Software
generation

Hardware
generation

Verif.
and

Testing

Cert
ifie

d

Formal
Proof

ATPG

Test
Vectors

implicit FSM
Explicit FSM

BDD

Figure 2: Esterel Studio overview

4. THE SUGGESTED METHODOLOGY
Our approach assumes that IP and components to integrate
are locally validated by the providers. So, the integration
phase consists in validating a multiple block composition,
i.e. validate the proper interoperability and interactions
among SoC blocks, e.g. that there are deadlock-free. In the
current SoC framework (re-use and IP approach), we have
to take into consideration the following statement: the
accurate knowledge of IP blocks remains with the IP
providers (both for trusted party IP or for internally
developed IP). Therefore, a “client” of an IP block
generally only knows the services (functions) that it
renders: it is the user’s view. The service notion is a

software-oriented concept; the transaction is a more
suitable term in a hardware context characterizing ordered
service accesses. A transactional description (TD) considers
IP blocks via the service access points or interface ports: it
is a “black-box” view (high-level description). TD gets rid
of complete and heavy cycle accurate behavior modeling.
TD exhibits the following major characteristics:

�� it does not require a high-level expertise (easy to
model and to understand); transactional models are
easy to express and intuitive! Transactions
essentially express asynchronous requests –
responses,

�� it allows a flexibility on block boundary
(interfaces), i.e. transactional models do not need
to be boundary accurate,

�� it is not implementation-dependant. Indeed,
transactions request temporally ordered services;
the way the services are provided does not impact
on them! Therefore, common transactional models
do not need to be cycle accurate. In certain cases,
especially to show evidence of deadlocks, “gray-
boxes” can be modeled. Gray-boxes are hybrid
description coupling transactional with local cycle-
accurate modeling.

So, the privileged approach to validate SoC integration is
the following:

�� design transactional models (TM) using a formal
approach. TM constitutes formalized TD;

�� from these deterministic models, automatically
generate covering test vectors to exercise SoC.

ESTEREL STUDIO (ES) is the appropriate tool to achieve this
methodology given that:

�� E&S formalisms are particularly suited to TM
(indeed, transactions denote high-level protocols1)

�� it offers a powerful symbolic ATPG.
Note that TM is a deterministic “sampling” of the SoC
behaviors, i.e. only a subset of significant behaviors is
considered. ES makes it possible to consider all the possible
behaviors of this abstraction.

4.1 A Step-by-Step Description
In this section, we precisely describe the methodology using
a step-by-step representation:
Step 1: Describe each IP block as black-boxes at a
transactional level
At this stage, IP blocks only export the offered and
rendered services. In a generic way, a service may be
arbitrarily acknowledged or not (Figure 3).

1 contrary to bus level protocol

service user
block

service provider
block

service.request

t

service.indication

not acknowledged service

service.request
service.indication

service.confirmation
service.response

acknowledged service

service user
block

Figure 3: Service access transaction

Now, let us consider the “EASY” application. On Figure 4,
we characterize IP1 block at transactional level via its
register. This block provides two unacknowledged services:
reading or writing (requests) inside a command register and
the associated “done” indications. These synchronization
events allowing the next reading or writing access (a kind of
READY signal).

IP1
rd_reg

wr_reg

rd_done

wr_done

Figure 4: I/O block black-box view

IP block services can often be viewed through (sequentially
ordered) Read / Write and ReadDone / WriteDone
transactions. Indeed, realize a service often consists in
updating a register content.

Step 2: Model the CPU as a transaction initiator.

In this step, the CPU is viewed as a way to stimulate IP
block services:

�� Design transactional model for each IP block in
order to trigger and synchronize its services (named
Service Access model). So, there are as many
Service Access (SA) models as there are IP blocks.

�� Put in parallel (concurrent composition) all the SA
models.

Note that, the CPU core interface should aggregate the
conjugated interfaces of each SA model (see example
hereafter).

A CPU core may generate ordered deterministically service
accesses, but generally, requests are sporadic. Therefore,
non-deterministic interleaving among services may be
needed to “cover” realistic transactions (requests are
sporadic or asynchronous by essence). E&S formalisms
consider non-determinism as an environment property. So,

we can cope with non-determinism by introducing extra-
inputs.

On Figure 5, each IP block involved in the “EASY”
platform is described as a black-box (resulting from step 1).

IP1
IP1_rd_done

IP1_wr_done

IP1_rd_reg

IP1_wr_reg

IP2

IP2_rd_reg1_done

IP2_wr_reg1_done

IP2_rd_reg1

IP2_wr_reg1

IP2_rd_reg2_done

IP2_wr_reg2_done

IP2_rd_reg2

IP2_wr_reg2

IP3
IP3_rd_done

IP3_wr_done

IP3_rd_reg

IP3_wr_reg

Figure 5: "black boxes" IP for "EASY" platform

Then, the CPU core interface (Figure 6) is the aggregation
of all IP blocks conjugated interfaces, i.e. each element
produced by an IP block is consumed by the CPU (for
synchronization reason) while each element consumed by
an IP block is produced by CPU. So, the CPU core is client
of the IP blocks.

CPU

IP1_rd_done

IP1_wr_done

IP1_rd_reg

IP1_wr_reg

rd_reg1_done

wr_reg1_done

IP2_rd_reg1

IP2_wr_reg1

rd_reg2_done

wr_reg2_done

IP2_rd_reg2

IP2_wr_reg2

IP3_rd_done

IP3_wr_done

IP3_rd_reg

IP3_wr_reg

extra-inputs modeling
non-determinism

Figure 6: CPU core interface

Concerning the SA model (behavior at transactional level)
of IP blocks, we opt for a generic model abstracting a
register (Figure 7). The “left path” models the reading
access to the register while the “right path” models the
writing access to the register. Note the asynchronous
waiting of “done” events as well as “CPU_read_req” and
“CPU_write_req” extra-inputs to introduce a non-
deterministic interleaving among accesses to the register.
Next, all the SA models are concurrently composed (see
Figure 8) to constitute a non-constraint CPU, i.e. all the IP
blocks are fully independent. Note the multiple instantiation
of “register” module to build IP2 block behavior.

Figure 7: transactio

Figure 8: CPU mod

Step 3: ESTERE
transactional test p

ESTEREL STUDIO A

Short mode: unitar

for each
from initia

Long mode is base
in order to reach as
reduces sequence
(exciting several
functional sequenc

ESTEREL STUDIO A
the following resul
“TransReadDone” state

nal model of a register

el

L STUDIO ATPG generates top-level
atterns.

TPG supports two generation modes:

y testing

state s of the RSS, generate a sequence
l state to state s.

d on the prolongation of short sequences
 many new states as possible. This mode
number and generates deep sequences
functionalities) closer to handwritten

es. We recommend to use long mode.

TPG applied on “EASY” example gives
ts:

EASY platform in a few number

Reachable State Space 626

Number of generated sequences 246

Number of transactions

(rd/wr – rd_done/wr_done)

� 600

Number of cumulated reaction 1576

Hereafter, a partial generated sequence is extracted from the
generated test cases (using Esterel Studio Simulator Input
format). The considered sequence simultaneously and
alternatively excites registers of the three IP blocks. “;”
token causes a program reaction with the specified input
vector.

%---

%----- Sequence: 1

%----- Covering: 205 new states

%----- Total covered: 205 new states

%----- Remaining: 421 uncovered

%---

;

% Outputs:

CPU_2_IP1_write_req CPU_2_IP3_write_req CPU_2_IP2_write_re
CPU_2_IP2_read_req_1 ;

% Outputs: IP1_wr_reg IP3_wr_reg IP2_wr_reg_2 IP2_rd_reg_1

IP3_wr_done ; % Outputs:

IP1_wr_done ; % Outputs:

CPU_2_IP3_write_req IP2_rd_done_1 ; % Outputs: IP3_wr_reg

CPU_2_IP1_write_req IP3_wr_done ; % Outputs: IP1_wr_reg

IP1_wr_done CPU_2_IP2_write_req_1 ; % Outputs: IP2_wr_reg_

CPU_2_IP3_write_req IP2_wr_done_1 ; % Outputs: IP3_wr_reg

CPU_2_IP1_read_req IP3_wr_done ; % Outputs: IP1_rd_reg

IP1_rd_done CPU_2_IP2_read_req_1 ; % Outputs: IP2_rd_reg_1

Figure 9: a generated pattern (partially viewed)

Exercising this sequence onto the CPU model would
effectively produce service (read or write) access requests
to IP block. On Figure 9, at each simulation step, the CPU
produced requests are shown using comments (following
the “% Outputs” token).
Step 4: Esterel Studio code generator produces CPU
code

From CPU model issued from steps 1 and 2, Esterel Studio
automatically generates consistent code (in the privileged
target language2).

Step 5: Generated transactional test cases are mapped on
test code

Step 3 produces a set of transactional level test cases. From
these test vectors a testbench should be derived. A
testbench is a piece of code which object is to exercise the
CPU generated code at step 4. Remember that CPU model
characterizes a transaction initiator, which goal is to request
sequentially or concurrently IP block services. The CPU
model may be viewed like an embedded software generator.
However, this component is not autonomous. To be self-
sufficient, CPU requires test cases which setup the extra-
inputs modeling non-determinism.

In this context, the testbench implements a simple execution
machine [3], i.e. a software dedicated to a (co-simulation)
platform, which role is to excite IP block codes (RTL, C,
etc.) by requesting services (see Figure 10).

CPU
Model

CPU
code

Transactional
Test cases

Step 3

Step 1

Step 2

Step 4:

ES Code

generation

submit Request IP services

Bank of unit functions
(manually written)

void funct {

mov ACC, 800h ;

*ACC = 12h }

System Level
test code

Direct into
• Simulators
• Emulators

STEP 5

Figure 10: test code
It is a trouble-free task to derive a testbench from generated
transactional test cases and generated CPU code. Indeed,
the Esterel Studio compiler provides an API exporting:

�� the reaction function consistent with specification,

�� the interface functions:

o Input functions to set the environment
input events,

o Output functions to affect the
environment.

A naming convention correlates function calls and logical
signals issued from model.

2 C,C++,VHDL,Verilog

Let us now consider the EASY application to illustrate this
step.

1) Derive CPU testbench from transactional test cases (let
us assume that C language is the privileged language), i.e.
write the “main” function which exercises the generated
code with the generated test cases:

void main(){
// first generated sequence
EASY_reset(); // behavior resetting
EASY(); // a reaction => tick
EASY_CPU_2_IP1_write_req();
EASY_CPU_2_IP2_read_req_1();
EASY_CPU_2_IP3_write_req();
// R/W events simultaneity
EASY();
…
// new sequence
EASY_reset();
…
}

Note that generated “model_I_signal()” input functions3
introduce a (first-level of) bufferization ensuring the input
vector consistency during the reaction.

Synchronization signals (“done” signals) call for a specific
processing. These signals enable to produce functionally
and temporally consistent sequences (wait for an
acknowledge, etc.). Contrary to extra-inputs which may
directly request input interface functions, synchronization
event presence depends on the IP block reactivity.
Synchronization events should be expanded using the
suggested skeleton:

void EASY_SYNC_IP1_rd_done() {
/* Your code {
e.g. wait for a completion interrupt
wait_IT(IP1);
} */
//Set IP1_rd_done for next reaction
EASY_I_IP1_rd_done();

}
void main(){
// first generated sequence
EASY_reset(); // behavior resetting
EASY(); // a reaction => tick
EASY_CPU_2_IP1_write_req();
EASY_SYNC_IP1_rd_done();//instead of EASY_I_IP1_rd_done
// Done event simultaneity
EASY();
…
// new sequence
EASY_reset();
…
}

Manually written “model_SYNC_sig()” synchronization
functions make possible complex command protocols to
wait for a service completion.

According to the behavior, a given input vector causes
outputs to be emitted during the reaction. These actions are

directed via an action table and consist in function calls. For
instance, to request write service for IP1, the CPU outputs
the “IP1_wr_req” signal. During a reaction, the
“IP1_wr_req” signal presence will result in the
“EASY_O_IP1_wr_req()” function call.

3 These functions are automatically generated by Esterel compiler

to enable a “safe” access to logical signals

2) Write “model_O_signal()” output functions or
link with existing symbols (library)

The output function content has in charge the effective
implementation of the corresponding service using low-
level primitives.

void EASY_O_IP1_rd_req() {
// for instance
asm {

mov AL, 06h
mov AH, 10h
…

}
}

The methodology recommends to embed CPU core in the
integration platform. Although that is not mandatory, this
approach seems to be more homogeneous and allows to
dynamically detect timing miss-matches, for instance.

4.2 Scaling-up
Previously, we have focused on a “ideal” transactional
method. Unfortunately, the SoC framework is undoubtedly
trickier. However, ES remains especially efficient for the
reasons described hereafter.
Transactional modeling follows an iterative process:
successive refinements are required to produce TM. First
refinement delivers a non-constraint CPU model; future
refinements introduce integration constraints, environment
constraints, etc. In this framework, a modular approach is
necessary. Moreover, so that the model development
process converges, a kth model refinement should only be a
specialization of the (k-1)th model refinement; this
characteristic identifies incremental modeling. Incremental
modeling capability is a “language” property. E&S
formalisms offer modularity and compositionality
properties allowing to apply an incremental modeling
approach.
For instance, let us assume that the EASY application now
performs a read-burst service only applicable for IP1 and
IP3. The read-burst mode realizes several sequential read
accesses (statically defined) atomically, i.e. during a read
burst mode, “write” actions are forbidden. To model this
behavior, we instantiate the “normal” register previously
designed, append a textual block modeling the burst mode
and introduce a few synchronizations4 (Figure 11). The

4 in() trigger tests the activity of a state. Register module exports

“transReadDone” (). Figure 7

burst size is given by an explicitly defined constant
(“cst_size_burst”). Note the ability to develop hybrid
graphical/textual description via SYNCCHARTS meta-
language.

Figure 11: register with a read burst mode

ESTEREL STUDIO ATPG applied on a modified version of
the “EASY” model, that is with the read-burst mode, gives
the following results, with “cst_burst_size”=5:

EASY platform in a few number

Reachable State Space 10 001

Number of generated sequences 3 595

Number of transactions

(rd/wr – rd_done/wr_done)

� 22 000

Number of cumulated reaction 46 091

As the CPU model is under-constrained, i.e. the IP blocks
are fully independents, the RSS exponentially grows
(therefore, the number of generated sequences and
transactions exponentially increases). As a result, it appears
fundamental to control the testbench expansion in order to
keep simulation time compatible with the time-to-market
pressure. Testbench expansion may be precisely addressed
by directing its tests using environmental constraints.
Indeed, constraints often correlate several IP block
behaviors, i.e. reduce the RSS.
For instance, let us assume that the EASY application has
to take into account the following integration constraint:
“IP1 and IP3 read burst mode are mutually exclusive”, i.e.
during a IP1 (respectively IP3) read-burst, IP3 (respectively
IP1) cannot request a transfer in read-burst mode.

The E&S modular approach makes the constraint
composition effortless. To model the previously defined
constraint, we suggest to create a concurrent component
(Figure 12) inhibiting, when it is relevant, the register
normal mode behavior using communication signals.
Inhibiting or freezing a behavior is modeled using the
suspension mechanism (Figure 13).
ESTEREL STUDIO ATPG applied on a constrained version of
the “EASY” model, that is with the exclusive read-burst
mode constraint, gives the following results, with
“cst_burst_size”=5:

EASY platform in a few number

Reachable State Space 2 626

Number of generated sequences 756

Number of transactions

(rd/wr – rd_done/wr_done)

� 3 900

Number of cumulated reaction 7 960

Figure 12: integration constraint modeling

Hardware architecture commonly embeds software.
Embedded software debugging should be addressed as soon
as possible in the SoC development process. Transactional
models may serve as hardware reference model to validate,
by advance, the embedded software before the availability
of precise hardware description (RTL for instance). As a
result, this approach can save simulation times compared to
costly cycle accurate model.

Figure 13: Integration constraint modeling

5. CONCLUSION
We have presented a methodology for the validation of IP
blocks interoperability in SoC designs. SoC top-level
validation is a touchy and decisive stage in the current IP
approach and reuse framework. In traditional testing, the IP
blocks are seen as black boxes. We have presented a
methodology that adds flexibility, increases the quality of
tests, while reducing the validation time for IP blocks
interoperability validation. Our methodology suggests the
use of a synchronous formalism such as E&S within which
the SoC design is modeled: IP blocks are easily described
as concurrent transactional models (TM) with different

levels of abstraction. TMs appear to be a sound abstraction
and provide enhanced scaling-up capabilities.

6. REFERENCES
[1] Esterel Studio in a nutshell

http://www.esterel-technologies.com/esterel/nutshell.htm

[2] André C. “Representation and Analysis of Reactive
Behaviors: A Synchronous Approach”, CESA’96,
IEEE-SMC, Lille, France

[3] Berry G. “The Foundations of Esterel, Proof,
Language and Interaction”: Essays in Honour of Robin
Milner, G. Plotkin, C. Stirling and M. Tofte, editors,
MIT Press, Foundations of Computing
Series, 2000.

[4] Bryant, R.E, “Graph-Based Algorithms for Boolean
Functions Manipulation”, IEEE Transactions on
Computers, C-35(8):677-691, 1986

[5] Boufaied H. “Machines d’exécution pour langages
synchrones”. PhD thesis (in french), Doctorat de
l'Université de Nice-Sophia Antipolis, 1998

[6] Pelissier G. et al. “Using Esterel Approach to Design
Complex Systems”, EDP 2001, Monterey, CA

[7] L. Arditi et al., “Using formal methods to increase the
confidence in the Validation of a Commercial DSP”, in
proc. of the Int'l ERCIM workshop on Formal Methods
for Industrial Critical Systems, FMICS 1999.

	INTRODUCTION
	THE “EASY” APPLICATION
	THE SYNCHRONOUS PARADIGMS
	THE SUGGESTED METHODOLOGY
	A Step-by-Step Description
	Scaling-up

	CONCLUSION
	REFERENCES

