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ABSTRACT 
In this paper, we suggest a methodological framework 
addressing the System on Chip top-level validation. Our 
systematic approach works on a powerful abstraction of IP 
blocks called transactional model. We state the 
transactional modeling “philosophy”, its benefits, and its 
limitations. The methodology is illustrated step by step on a 
simplified example. Its effective implementation is realized 
within Esterel Studio tool synchronous approach, formal 
verification and test generation capabilities. This 
methodology is an opportunity to reduce SoC top-level 
validation time, increasing confidence through larger and 
relevant functional coverage. 

Categories and Subject Descriptors 
M.1.6 [Design Methods Track]: Testing, test generation 
and debugging. 

General Terms 
Design, Verification. 

Keywords 
System on Chip, Integration, Validation, Transactional 
Model, ATPG, Synchronous Approach, ESTEREL STUDIO, 
SYNCCHARTS. 

1. INTRODUCTION 
When it comes to validating the System on Chip (SoC), 
there are two issues to consider. First, we need to verify the 
IP cores thoroughly and separately. Secondly, we need to 
verify their integration in the system; arduous challenge in 

design of very large chips. Indeed, the number of test 
vectors to exhaustively test SoC grows exponentially with 
the number of components and inputs of the system. Now, 
compound behaviors of multiple IP blocks generate huge 
state spaces, such that it is humanly impossible to consider 
all the test vectors that could cause the design to fail. In this 
context, Automatic Test Pattern Generation (ATPG) 
constitutes a rationalization of the SoC testing process. The 
most widely used approach to generate verification tests 
automatically is pseudo-random generation. However, 
coverage is often doubtful. Formal methods may be 
efficiently applied to generate deterministic test vectors 
covering all the possible behaviors rather than a limited and 
uncertain range of behaviors [7]. However, behavior 
models need to be complete and accurate. Unfortunately,  in 
the present SoC framework, most of the IP cores design 
knowledge remains with the IP provider or designer. Even 
though one would have the necessary knowledge, time-to-
market pressure is incompatible with IP core formalization.  

From the previous paragraph, it clearly appears that: 

�� Apply formal methods to automatically generate test 
vectors provides some consistence to the coverage. 

�� Due to time-to-market pressure, insufficient IP core 
knowledge (and potential combinational explosion), 
it is not reasonable to formally prove complex chips.  

In this context, the paper suggests a methodological 
framework for SoC top-level validation, test-oriented and 
based on formal synchronous approach using Esterel 
Studio. Esterel Studio development environment provides 
behavioral specification, simulation, formal verification, 
automatic test generation, coverage analysis and code 
generation.  
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The paper is organized as follows: Section 2 introduces the 
simplistic EASY application for methodology illustration 
purpose. Section 3 familiarizes the reader with the 
synchronous approach. Section 4 presents the 
methodology’s different steps and benefits. The 

 



methodology steps are first exercised on the EASY 
example. Then we give some guidelines to implement this 
methodology on real industrial cases. Finally, Section 5 
summarizes the methodology characteristics and presents a 
few perspectives. 

 

2. THE “EASY” APPLICATION 
In this section, we present a simple system called “EASY” 
to illustrate the methodology. The “EASY” example is 
composed of: 

�� a CPU (embedding software), 

�� three IP blocks performing functions. These IP 
blocks could represent I/O peripheral, CODEC 
components, etc. In a generic way, IP blocks can 
be viewed via their registers, i.e. to access a 
function one needs to access registers (set ith bit to 
1, etc.). IP1, IP2 and IP3 blocks export their 
functions via one or two command registers 
(Figure 1). Basically, the CPU or a client IP block 
can read or write registers and wait for a “done” 
event such as a completion interrupt. 

CPU

IP1 IP3

BUS

IP2

register

 

Figure 1: “EASY” example 

3. THE SYNCHRONOUS PARADIGMS 
ESTEREL [3] and SYNCCHARTS [2] (E&S) synchronous 
languages are dedicated to control-dominated reactive 
system modeling. These systems exhibit fundamental 
differences in comparison with “classical” algorithmic 
systems: 

�� they have to handle a large set of sporadic and/or 
periodic events potentially simultaneous, 

�� they have to cope with concurrent behaviors, 

�� they have to perform complex synchronizations. 

Therefore, E&S introduce preemptions, suspension, 
concurrency and hierarchy as native concepts.  

These formalisms are founded on a mathematically well-
defined semantic: a relevant abstraction conferring to 
design a behavioral determinism and reducing notably 

combinational complexity to consider. Obviously, this 
abstraction makes a physical sense since a physical 
representation compliant with the “abstract” (logical) model 
can be derived (hardware circuit translation). 

The ESTEREL STUDIO compiler compiles a program into a 
Finite State Mealy Machine (FSM). The FSM internal 
representation can be either explicit or implicit by means of 
Boolean equation systems. This model is the common base 
for simulation, code generation, formal verification, and test 
generation. Model-checking and test generation are 
performed using efficient BDD techniques [4]. 

ESTEREL STUDIO [1] unifies E&S formalisms (see Figure 
2). It provides a design chain without discontinuities from 
specification to validated hardware or software code. 
Therefore, it is a sound candidate in a top-down co-design 
flow [6]. ESTEREL STUDIO provides an automatic test 
pattern generator, handling reachable state space (RSS) via 
BDDs. The aim is to generate deterministic sequences 
ensuring the state coverage completeness, i.e. produce test 
vectors in order to cover 100% of the RSS.  
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Figure 2: Esterel Studio overview 

4. THE SUGGESTED METHODOLOGY 
Our approach assumes that IP and components to integrate 
are locally validated by the providers. So, the integration 
phase consists in validating a multiple block composition, 
i.e. validate the proper interoperability and interactions 
among SoC blocks, e.g. that there are deadlock-free. In the 
current SoC framework (re-use and IP approach), we have 
to take into consideration the following statement: the 
accurate knowledge of IP blocks remains with the IP 
providers (both for trusted party IP or for internally 
developed IP). Therefore, a “client” of an IP block 
generally only knows the services (functions) that it 
renders: it is the user’s view. The service notion is a 



software-oriented concept; the transaction is a more 
suitable term in a hardware context characterizing ordered 
service accesses. A transactional description (TD) considers 
IP blocks via the service access points or interface ports: it 
is a “black-box” view (high-level description). TD gets rid 
of complete and heavy cycle accurate behavior modeling. 
TD exhibits the following major characteristics: 

�� it does not require a high-level expertise (easy to 
model and to understand); transactional models are 
easy to express and intuitive! Transactions 
essentially express asynchronous requests – 
responses, 

�� it allows a flexibility on block boundary 
(interfaces), i.e. transactional models do not need 
to be boundary accurate, 

�� it is not implementation-dependant. Indeed, 
transactions request temporally ordered services; 
the way the services are provided does not impact 
on them! Therefore, common transactional models 
do not need to be cycle accurate. In certain cases, 
especially to show evidence of deadlocks, “gray-
boxes” can be modeled. Gray-boxes are hybrid 
description coupling transactional with local cycle- 
accurate modeling.  

So, the privileged approach to validate SoC integration is 
the following:  

�� design transactional models (TM) using a formal 
approach. TM constitutes formalized TD;  

�� from these deterministic models, automatically 
generate covering test vectors to exercise SoC. 

ESTEREL STUDIO (ES) is the appropriate tool to achieve this 
methodology given that: 

�� E&S formalisms are particularly suited to TM 
(indeed, transactions denote high-level protocols1 )  

�� it offers a powerful symbolic ATPG.     
Note that TM is a deterministic “sampling” of the SoC 
behaviors, i.e. only a subset of significant behaviors is 
considered. ES makes it possible to consider all the possible 
behaviors of this abstraction.   

4.1 A Step-by-Step Description 
In this section, we precisely describe the methodology using 
a step-by-step representation: 
Step 1:  Describe each IP block as black-boxes at a 
transactional level 
At this stage, IP blocks only export the offered and 
rendered services. In a generic way, a service may be 
arbitrarily acknowledged or not (Figure 3).    
                                                                 
1 contrary to bus level protocol 
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Figure 3: Service access transaction 

Now, let us consider the “EASY” application. On Figure 4, 
we characterize IP1 block at transactional level via its 
register. This block provides two unacknowledged services: 
reading or writing (requests) inside a command register and 
the associated “done” indications. These synchronization 
events allowing the next reading or writing access (a kind of 
READY signal).  

IP1
rd_reg

wr_reg

rd_done

wr_done

 
Figure 4: I/O block black-box view 

IP block services can often be viewed through (sequentially 
ordered) Read / Write and ReadDone / WriteDone 
transactions. Indeed, realize a service often consists in 
updating a register content. 

Step 2: Model the CPU as a transaction initiator. 

In this step, the CPU is viewed as a way to stimulate IP 
block services: 

�� Design transactional model for each IP block in 
order to trigger and synchronize its services (named 
Service Access model). So, there are as many 
Service Access (SA) models as there are IP blocks. 

�� Put in parallel (concurrent composition) all the SA 
models. 

Note that, the CPU core interface should aggregate the 
conjugated interfaces of each SA model (see example 
hereafter).  

A CPU core may generate ordered deterministically service 
accesses, but generally, requests are sporadic. Therefore, 
non-deterministic interleaving among services may be 
needed to “cover” realistic transactions (requests are 
sporadic or asynchronous by essence). E&S formalisms 
consider non-determinism as an environment property. So, 



we can cope with non-determinism by introducing extra-
inputs. 

On Figure 5, each IP block involved in the “EASY” 
platform is described as a black-box (resulting from step 1). 
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Figure 5: "black boxes" IP for "EASY" platform 

Then, the CPU core interface (Figure 6) is the aggregation 
of all IP blocks conjugated interfaces, i.e. each element 
produced by an IP block is consumed by the CPU (for 
synchronization reason) while each element consumed by 
an IP block is produced by CPU. So, the CPU core is client 
of the IP blocks.  
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Figure 6: CPU core interface 

Concerning the SA model (behavior at transactional level) 
of IP blocks, we opt for a generic model abstracting a 
register (Figure 7). The “left  path” models the reading 
access to the register while the “right path” models the 
writing access to the register. Note the asynchronous 
waiting of “done” events as well as “CPU_read_req” and 
“CPU_write_req” extra-inputs to introduce a non-
deterministic interleaving among accesses to the register. 
Next, all the SA models are concurrently composed (see 
Figure 8) to constitute a non-constraint CPU, i.e. all the IP 
blocks are fully independent. Note the multiple instantiation 
of “register” module to build IP2 block behavior. 
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EASY platform in a few number 

Reachable State Space 626 

Number of generated sequences 246 

Number of transactions  

(rd/wr – rd_done/wr_done) 

� 600 

Number of cumulated reaction 1576    

 

Hereafter, a partial generated sequence is extracted from the 
generated test cases (using Esterel Studio Simulator Input 
format). The considered sequence simultaneously and 
alternatively excites registers of the three IP blocks. “;” 
token causes a program reaction with the specified input 
vector.    

%---------------------------------------------------------
----

%----- Sequence:      1

%----- Covering:      205 new states

%----- Total covered: 205 new states

%----- Remaining:     421 uncovered

%---------------------------------------------------------

;

% Outputs:

CPU_2_IP1_write_req CPU_2_IP3_write_req CPU_2_IP2_write_re
CPU_2_IP2_read_req_1 ;

% Outputs: IP1_wr_reg IP3_wr_reg IP2_wr_reg_2 IP2_rd_reg_1

IP3_wr_done ; % Outputs:

IP1_wr_done ; % Outputs:

CPU_2_IP3_write_req IP2_rd_done_1 ; % Outputs: IP3_wr_reg

CPU_2_IP1_write_req IP3_wr_done ; % Outputs: IP1_wr_reg

IP1_wr_done CPU_2_IP2_write_req_1 ; % Outputs: IP2_wr_reg_

CPU_2_IP3_write_req IP2_wr_done_1 ; % Outputs: IP3_wr_reg

CPU_2_IP1_read_req IP3_wr_done ; % Outputs: IP1_rd_reg

IP1_rd_done CPU_2_IP2_read_req_1 ; % Outputs: IP2_rd_reg_1

 

Figure 9: a generated pattern (partially viewed) 

Exercising this sequence onto the CPU model would 
effectively produce service (read or write) access requests  
to IP block. On Figure 9, at each simulation step, the CPU 
produced requests are shown using comments (following 
the  “% Outputs” token). 
Step 4: Esterel Studio code generator produces CPU 
code 

From CPU model issued from steps 1 and 2, Esterel Studio 
automatically generates consistent code (in the privileged 
target language2). 

Step 5: Generated transactional test cases are mapped on 
test code   

Step 3 produces a set of transactional level test cases. From 
these test vectors a testbench should be derived. A 
testbench is a piece of code which object is to exercise the 
CPU generated code at step 4. Remember that CPU model 
characterizes a transaction initiator, which goal is to request 
sequentially or concurrently IP block services. The CPU 
model may be viewed like an embedded software generator. 
However, this component is not autonomous. To be self-
sufficient, CPU requires test cases which setup the extra-
inputs modeling non-determinism.   

In this context, the testbench implements a simple execution 
machine [3], i.e. a software dedicated to a (co-simulation) 
platform, which role is to excite IP block codes (RTL, C, 
etc.) by requesting services (see Figure 10).   

CPU
Model

CPU
code

Transactional
Test cases

Step 3

Step 1

Step 2

Step 4: 

ES Code 

generation

submit Request IP services

Bank of unit functions
(manually written)

void funct {

mov ACC, 800h ;

*ACC = 12h }

System Level
test code

Direct into
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Figure 10: test code 
It is a trouble-free task to derive a testbench from generated 
transactional test cases and generated CPU code. Indeed, 
the Esterel Studio compiler provides an API exporting: 

�� the reaction function consistent with specification,  

�� the interface functions: 

o Input functions to set the environment 
input events, 

o Output functions to affect the 
environment.  

A naming convention correlates function calls and logical 
signals issued from model. 

                                                                 
2 C,C++,VHDL,Verilog 



Let us now consider the EASY application to illustrate this 
step. 

1) Derive CPU testbench from transactional test cases (let 
us assume that C language is the privileged language), i.e. 
write the “main” function which exercises the generated 
code with the generated test cases:  

void main(){
// first generated sequence
EASY_reset(); // behavior resetting
EASY(); // a reaction => tick
EASY_CPU_2_IP1_write_req();
EASY_CPU_2_IP2_read_req_1();
EASY_CPU_2_IP3_write_req();
// R/W events simultaneity
EASY();
…
// new sequence
EASY_reset();
…
}  

Note that generated “model_I_signal()” input functions3 
introduce a (first-level of) bufferization ensuring the input 
vector consistency during the reaction.  

Synchronization signals (“done” signals) call for a specific 
processing. These signals enable to produce functionally 
and temporally consistent sequences (wait for an 
acknowledge, etc.). Contrary to extra-inputs which may 
directly request input interface functions, synchronization 
event presence depends on the IP block reactivity. 
Synchronization events should be expanded using the 
suggested skeleton:  

void EASY_SYNC_IP1_rd_done() {
/* Your code {
e.g. wait for a completion interrupt
wait_IT(IP1);
} */
//Set IP1_rd_done for next reaction
EASY_I_IP1_rd_done(); 

}
void main(){
// first generated sequence
EASY_reset(); // behavior resetting
EASY(); // a reaction => tick
EASY_CPU_2_IP1_write_req();
EASY_SYNC_IP1_rd_done();//instead of EASY_I_IP1_rd_done
// Done event simultaneity
EASY();
…
// new sequence
EASY_reset();
…
}

Manually written “model_SYNC_sig()” synchronization 
functions make possible complex command protocols to 
wait for a service completion.  

According to the behavior, a given input vector causes 
outputs to be emitted during the reaction. These actions are 

directed via an action table and consist in function calls. For 
instance, to request write service for IP1, the CPU outputs 
the “IP1_wr_req” signal. During a reaction, the 
“IP1_wr_req” signal presence will result in the 
“EASY_O_IP1_wr_req()” function call.  

                                                                 
3 These functions are automatically generated by Esterel compiler 

to enable a “safe” access to logical signals 

2) Write “model_O_signal()” output functions or 
link with existing symbols (library) 

The output function content has in charge the effective 
implementation of the corresponding service using low-
level primitives. 

void EASY_O_IP1_rd_req() {
// for instance
asm {

mov AL, 06h
mov AH, 10h
…

}
}

 
The methodology recommends to embed CPU core in the 
integration platform. Although that is not mandatory, this 
approach seems to be more homogeneous and allows to 
dynamically detect timing miss-matches, for instance.  

4.2 Scaling-up 
Previously, we have focused on a “ideal” transactional 
method. Unfortunately, the SoC framework is undoubtedly 
trickier. However, ES remains especially efficient for the 
reasons described hereafter.  
Transactional modeling follows an iterative process:  
successive refinements are required to produce TM. First 
refinement delivers a non-constraint CPU model; future 
refinements introduce integration constraints, environment 
constraints, etc. In this framework, a modular approach is 
necessary. Moreover, so that the model development 
process converges, a kth  model refinement should only be a 
specialization of the (k-1)th model refinement; this 
characteristic identifies incremental modeling. Incremental 
modeling capability is a “language” property. E&S 
formalisms offer modularity and compositionality 
properties allowing to apply an incremental modeling 
approach.  
For instance, let us assume that the EASY application now 
performs a read-burst service only applicable for IP1 and 
IP3. The read-burst mode realizes several sequential read 
accesses (statically defined) atomically, i.e. during a read 
burst mode, “write” actions are forbidden. To model this 
behavior, we instantiate the “normal” register previously 
designed, append a textual block modeling the burst mode 
and introduce a few synchronizations4 (Figure 11).  The 
                                                                 
4 in() trigger tests the activity of a state. Register module exports 

“transReadDone” ( ). Figure 7



burst size is given by an explicitly defined constant 
(“cst_size_burst”). Note the ability to develop hybrid 
graphical/textual description via SYNCCHARTS meta-
language.  
 

 
Figure 11: register with a read burst mode 
 

ESTEREL STUDIO ATPG applied on a modified version of 
the “EASY” model, that is with the read-burst mode, gives 
the following results, with “cst_burst_size”=5: 
 

EASY platform in a few number 

Reachable State Space 10 001 

Number of generated sequences 3 595 

Number of transactions  

(rd/wr – rd_done/wr_done) 

� 22 000 

Number of cumulated reaction 46 091 

 
As the CPU model is under-constrained, i.e. the IP blocks 
are fully independents, the RSS exponentially grows 
(therefore, the number of generated sequences and 
transactions exponentially increases). As a result, it appears 
fundamental to control the testbench expansion in order to 
keep simulation time compatible with the time-to-market 
pressure. Testbench expansion may be precisely addressed 
by directing its tests using environmental constraints. 
Indeed, constraints often correlate several IP block 
behaviors, i.e. reduce the RSS.  
For instance, let us assume that the EASY application has 
to take into account the following integration constraint: 
“IP1 and IP3 read burst mode are mutually exclusive”, i.e. 
during a IP1 (respectively IP3) read-burst, IP3 (respectively 
IP1) cannot request a transfer in read-burst mode.  

The E&S modular approach makes the constraint 
composition effortless. To model the previously defined 
constraint, we suggest to create a concurrent component 
(Figure 12) inhibiting, when it is relevant, the register 
normal mode behavior using communication signals. 
Inhibiting or freezing a behavior is modeled using the 
suspension mechanism (Figure 13).  
ESTEREL STUDIO ATPG applied on a constrained version of 
the “EASY” model, that is with the exclusive read-burst 
mode constraint, gives the following results, with 
“cst_burst_size”=5: 
 

EASY platform in a few number 

Reachable State Space 2 626 

Number of generated sequences 756 

Number of transactions  

(rd/wr – rd_done/wr_done) 

� 3 900 

Number of cumulated reaction 7 960 

 

 
Figure 12: integration constraint modeling 
 

Hardware architecture commonly embeds software. 
Embedded software debugging should be addressed as soon 
as possible in the SoC development process. Transactional 
models may serve as hardware reference model to validate, 
by advance, the embedded software before the availability 
of precise hardware description (RTL for instance). As a 
result, this approach can save simulation times compared to 
costly cycle accurate model. 
 



 
Figure 13: Integration constraint modeling 

 

5. CONCLUSION 
We have presented a methodology for the validation of IP 
blocks interoperability in SoC designs. SoC top-level 
validation is a touchy and decisive stage in the current IP 
approach and reuse framework. In traditional testing, the IP 
blocks are seen as black boxes. We have presented a 
methodology that adds flexibility, increases the quality of 
tests, while reducing the validation time for IP blocks 
interoperability validation. Our methodology suggests the 
use of a synchronous formalism such as E&S within which 
the SoC design is modeled: IP blocks are easily described 
as concurrent transactional models (TM) with different 

levels of abstraction. TMs appear to be a sound abstraction 
and provide enhanced scaling-up capabilities. 
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