
1

© CoWare, Inc. 2001

Dündar Dumlugöl

Vice President of Engineering,
CoWare, Inc.

Dündar Dumlugöl

Vice President of Engineering,
CoWare, Inc.

SystemC abstractions and SystemC abstractions and
design refinement for HWdesign refinement for HW--

SW SW SoCSoC designdesign

2

© CoWare, Inc. 2001

Overview
q SystemC abstraction levels & design flow
q Interface Synthesis
q Analyzing system performance
q Examples
q Key modeling paradigms & semantics
q Conclusions

2

3

© CoWare, Inc. 2001

Abstractions

HardwareSoftware

BCA

RTLRTOS

TF

Assign ‘execution delay’

HW / SW Partition
Architectural mapping

Abstr .
RTOS

Refine communication

Functional Architecture
decomposition

UTF
SystemC

Refine behavior

Untimed Functional

Timed Functional

Bus Cycle Accurate

Cycle Accurate

Architectural Exploration

Performance Analysis
HW/SW partitioning

Task Partitioning

Target RTOS/Core

UML EsterelSDL OthersMatlab

4

© CoWare, Inc. 2001

Simulation speed for different abstractions

No ISS1x30 Hz RTL

With ISS for core10x300 Hz

BCA

Minimum required for
platform developer

1,000x30 kHz

CATrans.

Minimum required for
SW/firmware developer

10,000x300 kHz

Timed Trans.

100,000x3 MHz

UTF

Estimated10,000x300 kHz

Emulation

Real chip3,300,000x100 MHz

SoC

Comments

WCDMA test platform
@100 Mhz

Real time (s)
simulated in
10h

Simulation
speed

3

5

© CoWare, Inc. 2001

Gradual Refinement of the Design
Key to the methodology is that a design may be refined in a gradual step-wise fashion, rather than in one

giant step… it need not be “all or nothing”.

UTF UTF UTF

UTF UTF

UTF UTF TF

UTF TF

TF BCA RTL

UTF RTL

Details added
to portions of
the system.

Simulation

Simulation

Simulation

6

© CoWare, Inc. 2001

Algorithmic level
q Algorithm described in a sequential language such as C
q Functional structure has no bearing to implementation

architecture
q Example: JPEG/ MPEG algorithm development
q Design solutions: Matlab, SPW, Cossap, etc

4

7

© CoWare, Inc. 2001

Untimed Functional (UTF)
q An architectural/structural decomposition of the system

into functional blocks which are structurally
interconnected over abstract communication channels

q Models control- and data-flow at an abstract functional
level with abstract data types

q Enables easy refinement to HW-SW architecture
q Re-use of test benches & simulation results as references in

subsequent design refinements

8

© CoWare, Inc. 2001

Sequential (in-lined) process execution
q A process triggers execution of a slave process in- lined

with itself
q Emulates function execution as in C programs

5

9

© CoWare, Inc. 2001

Example: sequential C program

static int sum = 0; // state variable

void generate_data() {
for (int i = 0; i < 10; i++) {

accumulate(i) ;
}

}

void accumulate(int in1) {
sum += in1;
cout << “Sum = “ << sum << endl;

}

10

© CoWare, Inc. 2001

Same example with in-lined process execution

P1 P2

Concurrent process:
generate_data()

Slave process:
accumulate()

Equivalent to function call but without function pointer

Structure is
key for re-use

Transaction triggers slave process execution

Sequential behavior of C-code is preserved
Separation in 2 processes allows
structural decomposition and re-use

6

11

© CoWare, Inc. 2001

Example: producer module
SC_MODULE(producer) {
 sc_outmaster<int> out1;

 void generate_data() {
 for (int i = 0; i < 10; i++) {
 out1 = i ; // this will invoke

 //the slave;
 }
 }

 SC_CTOR(producer) {
 SC_METHOD(generate_data);
 }
};

12

© CoWare, Inc. 2001

Slave process

SC_MODULE(consumer) {
 sc_inslave<int> in1;
 int sum; // state variable

 void accumulate() {
 sum += in1;
 cout << “Sum = “ << sum << endl;
 }

 SC_CTOR(consumer) {
 SC_SLAVE(accumulate,in1);
 sum = 0; // initialize
 }
};

7

13

© CoWare, Inc. 2001

Structural module

SC_MODULE(top) { // structural module
producer *A1;
consumer *B1;

 sc_link_mp<int> link1;

 SC_CTOR(top) {
A1 = new producer(“A1”);
A1->out1(link1);
B1 = new consumer(“B1”);
B1->in1(link1);

 }
};

14

© CoWare, Inc. 2001

Sequential (in-lined) process : summary
q SC_SLAVE process executes in- line with another process

– Slave process has a single slave port that connects to a sequential
link (sc_link_mp)

– Caller process connects with a master port to a sc_link_mp

– Invocation occurs by master accessing master port

– Slave process can call other slaves

8

15

© CoWare, Inc. 2001

Untimed Functional example

Input Unit Control
Unit

Arithmetic
Unit

Display
Unit

cmd

op1

op2

cmd

op1

op2

result

display

System is described in terms of 3 concurrent threads with in-lined slave processes.
The concurrent threads (IU, CU, AU shown as loops) are synchronized over events:
CR (Command Ready), BF (Buffer Free), AUR (AU Ready), SAU (Start AU)

SAU

CR

AUR

BF
ISR1

ISR2

16

© CoWare, Inc. 2001

What the example does
q A simple system with an Input Unit (IU), a Controller Unit

(CU) and an arithmetic co-processor (AU) unit takes a
triplet consisting of an arithmetic operator and two
operands, calculates the result and displays it.

q The control flow is as follows: An Input Unit generates
triplets (can be a test bench) asynchronously. Sends the
triplet to the Control Unit (CU) if the latter’s input buffer is
free. CU writes the triples into the register of the
Arithmetic Unit (AU) if the latter is not busy and generates
a buffer free event. This will start the AU. The CU then
waits for an AU ready event. The AU calculates the result
and sends it back to the CU (ISR2) which then dispatches
the result to the Display Unit and generates an AU ready
event.

9

17

© CoWare, Inc. 2001

Process execution order for the example

Relative order of process execution

IU

CU->Cmd->Op1 ->Op2
CU

AU

IU ->ISR1->Op1->Op2 IU….->ISR1->Op1->Op2

AU->ISR2->DU

Vertical arrows depict synchronization events between the 3 concurrent threads
Horizontal lines show in-lined process executions within each concurrent thread
(IU, CU, AU)

CR BF

SAU AUR

CU->Cmd->…

CR

18

© CoWare, Inc. 2001

UTF summary

q Combines sequential and concurrent processes
q Transaction & computation order is modeled, time is not
q Allows abstraction of (initially unwanted or unknown)

implementation details : data/ control flow, clocking,
concurrency, pipelining, time

q Assumptions: infinite resources which are infinitely fast

10

19

© CoWare, Inc. 2001

Benefits of UTF
q Allows control/data flow description before timing is

available
q Can be easily partitioned into SW-HW
q Very compact descriptions of complex data- and control-

flows (10x-100x less code)
– No FSM’s required for behavior or communication

– Abstract data types

q 5 orders of magnitude faster simulation than at RTL level

20

© CoWare, Inc. 2001

Timed Functional Abstractions
q Pre-partitioned (HW-SW)

– Add timing to the UTF system in the form of timing estimates,
timing constraints or time budgets

– Time delays are in absolute time units

– System is timed but not clocked

q Post-partitioned (HW-SW)
– Add timing to the UTF system for HW-SW partitioning,

architecture exploration and optimization (bus hierarchy, memory
architecture, cache size, etc)

– Map SW blocks to cycle accurate models of processor core & bus/
memory architecture

– HW is either untimed (assuming fast enough to not affect the
critical path) or timed with estimated cycle delays

11

21

© CoWare, Inc. 2001

Optimizing Wireless Handset architecture

EDRAM

Bus
Control

Sync IO

Timer

UART

Bridge Bridge

128/64 bit
DSP MCURISC DMA RAM ROMRAM ROM

LCD

Keypad

Timer

UART

RF subsystem
I and Q

Baseband
Processing

Control and Data
Channel Link

Control State
Machine

20 ms
frame rate 5 us

symbol timing

22

© CoWare, Inc. 2001

Optimizing SOC bus architecture
q Bus architecture - choosing the correct bus architecture is

one of the biggest problems in SOC design.
q Parameters

– Standard (e.g. AMBA) versus custom

– Arbitration (scheduling algorithms)

– Bus width

– Bus pipelining (wait state versus split transaction)
– DMA

– Hierarchy (e.g. system bus versus peripheral bus)

12

23

© CoWare, Inc. 2001

Optimizing SOC memory architecture
q Memories - choosing memory components and hierarchy

can have large affect on system performance
– cache, SRAM, DRAM, flash, etc.

– size and hierarchy

– power consumption
– wait states and system throughput

24

© CoWare, Inc. 2001

AU example after HW-SW partitioning

Input Unit Control
Unit

Arithmetic
Unit

Display
Unit

cmd

op1

op2

cmd

op1

op2

result

display

Map the processes in the Control Unit block to SW running on a MCU core.
Use interrupt scenarios on cmd (from IU) and result channels with
ISR1 and ISR2 as respective Interrupt Service Routines.

SAU

CR

AUR

BF
ISR1

ISR2

AU

CU

IU

SW in HW in

clk

clk
clk

13

25

© CoWare, Inc. 2001

Interface Synthesis (IFS)
q What you get from IFS

– Ability to configure your platform with multi-master, multi-layer,
multi-bus and hierarchical memory architectures

– Cycle Accurate processor model, e.g. ARM926-EJS CCM model

– Fast Cycle Accurate model of the above platform

– Automatic mapping of your UTF system to this platform including
generation of boot code, device drivers, address maps, address
decoders in the bus and bus bridges

– IFS is an enormous productivity tool since you don’t have to know
details about the core, its bus protocol, pin timing, etc. because the
IFS tool has knowledge about the core and its platform.

– You can now very easily (in a matter of hours) change your HW-
SW partition at the UTF level or choose a different core or modify
your platform, regenerate the cycle accurate model of the system
and analyze the impact of your changes on system performance

26

© CoWare, Inc. 2001

Interface Synthesis

Processor

Bridge I/O Scenario

RAM Controller
RAM

ROM Controller
ROM

Address Decode

Data Size

Wait State Resolution

Mem

Size

Wait

Vendor’s
CPU

model

.c

.o

.exe

Startup code &
device drivers

Interrupt

Interrupt Priority Encoder

Bridge Interrupt Scenario

.c

.o

Users code

Users
Hardware

- Setup vector table
- Initialize stack pointers
- Disable interrupts
- Map ports to addresses

Processor and subsystem

Instantiate processor model Instantiate support blocksSynthesize bus structure

SYS_clock

SYS_reset

Subsystem must be
driven by a clock:

Interface Synthesis divides the system into distinct hardware and software
portions, connecting a processor and support subsystem to the hardware, and
integrating startup code and device drivers to the software.

14

27

© CoWare, Inc. 2001

Sample IFS-generated System
MemoryMemory Controller

Memory Bus

ASB-Mem Bus
Bridge

ASB Bus

APB Bus APB -Virtual Bus
Bridge ScenariosASB Select

Processor

ASB-APB
Bridge

Interrupt
Generation

User
Hardware

System Software
mapped to processor

28

© CoWare, Inc. 2001

Analyzing System Performance
q Architectural analysis

– Analyze token-based performance model
– Study throughput and bottlenecks
– Look at bus switching and cache usage to reduce power
– Optimize bus & memory architecture

q Functional analysis
– Look at system response and task scheduling

– Analyze complexity to drive partitioning
– Profile software for optimization

15

29

© CoWare, Inc. 2001

Analysis views (HW/SW)

q SW Views

– Gantt chart

– Function/task call stack

– Memory access / time

– Memory page access

– CPU load

– Memory access + SW trace

– Memory map counts

q HW Views

– Gantt chart

– Call Graph

– Operation Count

– Variable Info / Operator Count.

– Variable Tracing

– Function/Thread Call Stack

30

© CoWare, Inc. 2001

Memory access patterns

16

31

© CoWare, Inc. 2001

CPU loading/SW profiling

32

© CoWare, Inc. 2001

Design results
q Gantt charts show performance results

17

33

© CoWare, Inc. 2001

JPEG2000 VirtexII Pro (Xilinx) SW Platform

Input Data and
Parameters

Reader

PowerPC
Processor

Codestream
Output
WriterMemory

OPB Bus Structure

Yosemite
Image

34

© CoWare, Inc. 2001

JPEG2000 platform
q Architectural exploration focused on two alternatives

– A) Implement JPEG algorithm with Wavelet transform in SW

– B) Implement Wavelet algorithm in HW

q Architectural analysis reveals that bottleneck is not in the
Wavelet algorithm as initially expected but instead in the
code stream output writer due to memory accesses

q Without this analysis, RTL designers would have selected
the wrong HW-SW partitioning

q Greatest gain in performance and power is achieved in
architectural optimizations

18

35

© CoWare, Inc. 2001

Modeling HW in the TF Abstraction
q Some blocks may remain untimed if their timing is not

critical to the system function or performance (they’re
assumed to be fast enough)

q Other blocks are in UTF annotated with cycle delays
– Concurrent HW threads must be attached to a clock

– Slave processes get their clock tick from the concurrent thread that
calls them

36

© CoWare, Inc. 2001

SW design flow
q Abstract RTOS level

– Functional threads are partitioned into SW processes per core
processor in a multi-core system

– SW processes may be created dynamically

– SW processes are scheduled using an abstract (generic) RTOS;
scheduling policy and process priorities are defined

– Inter-process communication is implemented (shared memory,
semaphores, sockets, mailboxes, etc)

q Target RTOS level
– Abstract RTOS calls are now mapped to a target RTOS with

further refinement of communication and scheduling

19

37

© CoWare, Inc. 2001

The RTL Implementation level
q IFS generates automatically RTL implementation of the

platform from the specifications of the TF platform
q HW blocks are implemented at the RTL level as follows:

– All HW (concurrent and slave) processes are implemented as
clocked processes

– Functional communication channels are refined to handshake bus
protocols

38

© CoWare, Inc. 2001

BCA example: full-handshake protocol

Producer Consumer
link

Full Handshake protocol

Producer ConsumerReq
Ack
Data

clk1 clk2

After in-lining of communication channel processes
into the master and slave blocks

20

39

© CoWare, Inc. 2001
Conclusions

q SystemC supports modeling abstractions for HW/SW co-design
from Functional to RTL

q Abstraction levels can be mixed for gradual refinement
q Benefits

– Fast design exploration & HW/SW partitioning

– Enables synthesis of communication

– Fast IP embedding & retargeting

– Orders of magnitude faster than RTL verification

40

© CoWare, Inc. 2001

SystemCTM Community

21

41

© CoWare, Inc. 2001

Backup slides
q TF communication details
q Key modeling paradigms

42

© CoWare, Inc. 2001

TF communication revisited

q Timed Transactional (TT)
– Mostly for SW modeling

– Delay is in absolute time units

q Cycle Accurate Transactional (CAT)
– For HW modeling including Bus/ Memory architecture

– Delay in clock cycles

22

43

© CoWare, Inc. 2001

Cycle Accurate Transactional Modeling
q Models transactions on a bus between bus masters & slaves

– Cycle accurate

– Bus protocol specific

– Arbitration, address, data cycles

q Protocol independent generic API allows re-use
– Mapping to a bus protocol through protocol specific libraries (re-use)

– Specify attributes of a transaction: data width, data size, burst, status,
etc

44

© CoWare, Inc. 2001

Benefits of CA Transactional modeling

q Platform architecture exploration and optimization
– Bus hierarchy: number of buses, assignment of resources to buses

– Memory hierarchy / size

– Cache size

– HW-SW partitioning

– Analysis for bus throughput, bottlenecks

q Much less user code than in RTL

23

45

© CoWare, Inc. 2001

Key modeling paradigms
q Model of hierarchy and re-use
q Model of

– Process execution

– Process communication

– Process synchronization

q Model of Time

46

© CoWare, Inc. 2001

Model of hierarchy and re-use
q All behavior is described in processes; statements in a

process execute sequentially
q Processes are “encapsulated” in modules which have ports
q All external communication takes place exclusively over

module ports (to enable module re-use)
q Inside a module processes can communicate over shared

variables and internal channels
q Modules are interconnected through their ports to

communication channels

24

47

© CoWare, Inc. 2001

Model of communication
q Abstract functional
q Transactional

– Timed

– Cycle accurate/ bus protocol accurate

q Bus Cycle Accurate communication
– Cycle & Pin accurate

48

© CoWare, Inc. 2001

Model of time
q Untimed
q Timed (but not clocked)
q Clocked (cycle accurate)

25

49

© CoWare, Inc. 2001

Model of process execution
q Concurrent process execution

– Communication & synchronization

q Sequential (in- lined) process execution
– Abstract point-to-point & multi-point sequential communication

50

© CoWare, Inc. 2001

Concurrent processes
q SC_THREAD process

– Thread type (can be suspended)

– Process execution is triggered from its sensitivity list

– Process can suspend at a wait() statement & resume

– Has a stack to store its state

– Can have static and/ or dynamic sensitivity

q SC_METHOD process
– Method process (functional call, can not suspend)

– Process execution is triggered from its sensitivity list

– Has static sensitivity only

26

51

© CoWare, Inc. 2001

Concurrent process communication
q Concurrent processes communicate over a concurrent

channel (=user defined module)
– Shared variables for intra-module communication

– Signals for intra- & inter-module communication

– Signals are a special form of concurrent communication channel
(for HW, supports evaluate-update paradigm)

52

© CoWare, Inc. 2001
Model of process synchronization

q Concurrent processes synchronize over events
sc_event my_event; // fundamental sync object

q Two types of process sensitivity:
– Static : wait() without arguments; sensitivity in constructor
– Dynamic: changes during simulation

q wait(ev1 | ev2 | …) // on any one or more events
q wait(ev1 & ev2 & …) // on all events
q event.notify(0) // next delta cycle
q event. notify(delay); // timed notification
q event.notify(); // immediate notify, not in v1.2

q Mutex& semaphores built as libraries on core sync objects

27

53

© CoWare, Inc. 2001

Sequential (in-lined) process execution
q A process triggers execution of a slave process in- lined

with itself
q Emulates function execution as in C programs

54

© CoWare, Inc. 2001

Multi-point sequential communication

A11 A12 A13

A21 A22

A

B

Abstract model for a bus communication:
A transaction by a master causes all slaves on the bus to be called;
Based on index value the slaves decide whether to respond or not

Multi-point will be later refined into a real bus communication
with address decoding & arbitration, concurrent behavior

28

55

© CoWare, Inc. 2001

Sequential & concurrent communication combined

FIFO channel

Producer Consumer

BW BRFIFO
bWrite bRead

clk1 clk2

BW: blocking write with time-out
BR: blocking read with time-out

