SystemC abstractions and
design refinement for HW-
SW SoC design_.........

Dlndar Dumlugal

Vice President of Engineering,
CoWare, Inc.

CoWare

Overview

0 SystemC abstraction levels & design flow
a Interface Synthesis

a Anayzing system performance

0 Examples

0 Key modeling paradigms & semantics

a Conclusions

Abstractions

SystemC

—

Architectural Exploration

Performance Analysis
HW/SW partitionin!

Target RTOS/Core

Software

© CoWare, Inc. 2001

Functional Architecture
decomposition

Untimed Functional

HW/ SWPartition
() Architectural mapping

Refine communication
Task Partitioning % Bus Cycle Accurate
Refine behavior

Cycle Accurate

Hardware

CoWare

Simulation speed for different abstractions

© CoWare, Inc. 2001

Simulation Real time (s) | Comments
speed Simulated in | \CDMA test platform
@100 Mhz
100 MHz 3,300,000x Rea| Chlp
SoC
300 kHz 10,000x ESU mated
Emulation
3 MHz 100,000x
UTF
300 kHz 10,000x| Minimum required for
Timed Trans. SW/firmware devel oper
30 kHz 1,000x| Minimum required for
CATrans. platform devel oper
300 Hz 1ox| With ISSfor core
BCA
RTL 30 Hz 1x| No 1SS

Gradual Refinement of the Design

Key to the methodol ogy isthat adesign may be refined in agradual step-wise fashion, rather thanin one
giant step... it need not be “all or nothing”.

| utr 5 utr 5§ UTF| @
>
] U
Details added | P | @
to portions of I_ —
the system. Ui I'
| TF < BcA EH RTL| R
] U

CoWare

Algorithmic level

© CoWare, Inc. 2001

0 Algorithm described in a sequential language such as C

0 Functiona structure has no bearing to implementation
architecture

0 Example: JPEG/ MPEG algorithm development
0 Design solutions: Matlab, SPW, Cossap, etc

Untimed Functional (UTF)

0 An architectural/structural decomposition of the system
into functional blocks which are structurally
interconnected over abstract communication channels

0 Models control- and data-flow at an abstract functional
level with abstract data types

0 Enables easy refinement to HW-SW architecture

0 Re-use of test benches & simulation results as referencesin
subsequent design refinements

Sequential (in-lined) process execution

0 A process triggers execution of a slave processin-lined
with itself

0 Emulates function execution as in C programs

Example: sequential C program

© CoWare, Inc. 2001

staticint sum=0; // state variable

Same example with in-lined process execution

© CoWare, Inc. 2001

Sequential behavior of C-code is preserved
Separation in 2 processes allows
structural decomposition and re-use

P1 P2
O D [:O Structure is
/ \ key for re-use
Concurrent process: Slave process:
generate_data() accumulate()

Transaction triggers slave process execution
Equivalent to function call but without function pointer

Example: producer module

© CoWare, Inc. 2001

1

SC_MODULE(pr oducer) {
sc_outmaster<int> outl;
voi d generate_data() {

Q n =10 i < 10; i++) {

//the sl ave;

}

SC_CTOR(pr oducer) {
SC_METHOD(gener at e_dat a) ;
}

// this will invoke

Slave process

© CoWare, Inc. 2001

12

int sum /] state variabl e

voi d accunul ate() {
sum += inl;
cout << “Sum = “ << sum << endl ;

}

SC CTOR(consuner) {

su51=0; [/l initialize

Structural module

© CoWare, Inc. 2001

SC_MODULE(top) { // structural nodul e
producer *Al;
consuner *Bl:
[sc_link_np<int> linki; |

SC CTOR(top) {
Al = new producer (“Al");
Al->out 1(1i nk1);
Bl = new consuner(“Bl1");
Bl->in1(link1);

5 CoWare

Sequential (in-lined) process : summary

© CoWare, Inc. 2001

0 SC_SLAVE process executes in-line with another process

Slave process has a single slave port that connects to a sequentia
link (sc_link_mp)

Caller process connects with a master port to asc_link_mp
Invocation occurs by master accessing master port
— Slave process can call other slaves

1 CoWare

Untimed Functional example

15

Input Unit Control Arithmetic
Unit

Display
display o Unit

::)

i

System isdescribed in terms of 3 concurrent threadswith in-lined slave processes.
The concurrent threads (1U, CU, AU shown as loops) are synchronized over events:
CR (Command Ready), BF (Buffer Free), AUR (AU Ready), SAU (Start AU)

CoWare

What the example does

© CoWare, Inc. 2001

16

a A simple system with an Input Unit (1U), a Controller Unit

(CU) and an arithmetic co-processor (AU) unit takes a
triplet consisting of an arithmetic operator and two
operands, calculates the result and displaysiit.

The control flow is as follows: An Input Unit generates
triplets (can be atest bench) asynchronoudly. Sends the
triplet to the Control Unit (CU) if the latter’ s input buffer is
free. CU writes the triples into the register of the
Arithmetic Unit (AU) if the latter is not busy and generates
a buffer free event. Thiswill start the AU. The CU then
waits for an AU ready event. The AU calculates the result
and sends it back to the CU (ISR2) which then dispatches
the result to the Display Unit and generates an AU ready
event.

CoWare

Process execution order for the example

© CoWare, Inc

2001

U ->ISR1->0p1->0Op2 IU....->ISR1->0p1->0p2
V]
CR BF CR
cu CU->Cmd->Op1->0p2 CU->Cmd->...
SAU AUR
AU->ISR2->DU
AU

Relative order of process execution

17

Vertical arrowsdepict synchronization events between the 3 conaurrent threads
Horizontal linesshow in-lined process executions within each concurrent thread
(U, CU, AU)

CoWare

UTF summary

© CoWare, Inc. 2001

18

0 Combines sequential and concurrent processes
0 Transaction & computation order is modeled, time is not

a Allows abstraction of (initially unwanted or unknown)
implementation details : data/ control flow, clocking,
concurrency, pipelining, time

Q Assumptions: infinite resources which are infinitely fast

Benefits of UTF

re, Inc. 2001

19

0 Allows control/data flow description before timing is
available

0 Can be easily partitioned into SW-HW

0 Very compact descriptions of complex data- and control-
flows (10x-100x less code)

— No FSM’s required for behavior or communication
— Abstract datatypes

0 5 orders of magnitude faster ssimulation than at RTL level

Timed Functional Abstractions

©CoWare, Inc. 2001

20

a Pre-partitioned (HW-SW)

— Add timing to the UTF system in the form of timing estimates,
timing constraints or time budgets

— Timedelays are in absolute time units
— Systemistimed but not clocked
0 Post-partitioned (HW-SW)

— Add timing to the UTF system for HW-SW partitioning,
architecture exploration and optimization (bus hierarchy, memory
architecture, cache size, etc)

— Map SW blocksto cycle accurate models of processor core & bus/
memory architecture

— HW iseither untimed (assuming fast enough to not affect the
critical path) or timed with estimated cycle delays

CoWare

Optimizing Wireless Handset architecture

© CoWare, Inc. 2001

21

Baseband Control and Data Control State
Processing, Channel Link / Machine
|
I
RAM Rom GBI qigcpva MCU RAM ROM
Bridge Bridge
Timer LCD
UART Bus Keypad
Control
RF subsystem .
Iant?/Q —— Synclo EDRAM Timer
UART
20ms \
framerate 5us
symbol timing

Optimizing SOC bus architecture

© CoWare, Inc. 2001

one of the biggest problems in SOC design.

a Parameters

Standard (e.g. AMBA) versus custom

Arbitration (scheduling algorithms)

— Buswidth

Bus pipelining (wait state versus split transaction)
— DMA

Hierarchy (e.g. system bus versus peripheral bus)

2

0 Busarchitecture - choosing the correct bus architecture is

Optimizing SOC memory architecture

© CoWare, Inc. 2001

0 Memories- choosing memory components and hierarchy
can have large affect on system performance

cache, SRAM, DRAM, flash, etc.
size and hierarchy

— power consumption

wait states and system throughput

2z CoWare

AU example after HW-SW partitioning

©CoWare, Inc. 2001

SWin e—— HW in e—

Display
Unit

:o

Map the processesin the Control Unit block to SW running on aMCU core.
Useinterrupt scenarios on cmd (from [U) and result channels with
ISR1 and I SR2 asrespective I nterrupt Service Routines.

2 CoWare

Interface Synthesis (IFS)

25

0 What you get from IFS

— Ability to configure your platform with multi-master, multi-layer,
multi-bus and hierarchical memory architectures

— Cycle Accurate processor model, e.g. ARM926-EJS CCM model
— Fast Cycle Accurate model of the above platform

— Automatic mapping of your UTF system to this platform including
generation of boot code, device drivers, address maps, address
decoders in the bus and bus bridges

— IFSisan enormous productivity tool since you don’t have to know
details about the core, its bus protocol, pin timing, etc. because the
IFStool has knowledge about the core and its platform.

— You can now very easily (in amatter of hours) change your HW -
SW partition at the UTF level or choose a different core or modify
your platform, regenerate the cycle accurate model of the system
and analyze the impact of your changes on system performance

CoWare

Interface Synthesis

26

Interface Synthesisdividesthe system into distinct hardware and software
portions, connecting aprocessor and support subsystem to the hardware, and
integrating startup code and devicedriversto the software.

Startup code &

device drivers
________ Users code Processor and subsystem

E

7 - .ex

- Setup vector table
- Initialize stack pointers
- Disableinterrupts
- Map ports to addresses

Users
Hardware

Subsystem must be
driven by aclock:

SYS dok mmrs
SYS rest

1
1
'
'
'
'
1
1
1
'
'
T
'
1
1
'
1
1
'
'
1

o4
1
1
1
'

ridge Interrupt o
nterfpt

Interrupt — '

\7,’—’ 1

N

| nstantiate processor model Synthesizebusstructure I nstantiate support blocks

© CoWare, Inc. 2001

©CoWare, Inc. 2001

. Sample IFS-generated System

© CoWare, Inc. 2001

| Memory Bus

Memory Controller Memory

stem Software ASEMam Bus = [
mapped to processor Bridge L - = v
L riadaty
1
- [e v o
=T
ASBBuUS i ¥
= rg —
» I} . #
*
- [
: ' APB-Virtual B
' i Virtual Bus
! |, ASBSdect APB Bus Bridge Seenarios H;ﬁwe
- R e 0 AT o — — —
A t: oo el | =, = ¥ : . :
= Lo & ' ™ 1
; - | AR Ly Ty L [T i
L " e vl !
K = " H
[2y ' !
H g e~ ' ;
Rt ¥ e ‘ gt
] i : g
ASB-APB ¥ 1 !
Bridge h .
LI
| | r Ul Lo . o s | - :
¥ |
e ¥
" Interrupt ¥
=1 | __Generation gl
P o L T
o (B ———
L]

Analyzing System Performance

©CoWare, Inc. 2001

Q Architectural analysis
Analyzetoken-based performance model
Study throughput and bottlenecks
Look at bus switching and cache usage to reduce power
— Optimize bus & memory architecture
o Functional analysis
— Look at system response and task scheduling
— Analyze complexity to drive partitioning
— Profile software for optimization

» Collare

Analysis views (HW/SW)

re, Inc. 2001

0 HW Views

Gantt chart
Cal Graph
Operation Count

Variable Info / Operator Count.

Variable Tracing
Function/Thread Call Stack

0 SW Views

Gantt chart

Function/task call stack
Memory access/ time
Memory page access

CPU load

Memory access+ SW trace

Memory map counts

29

Memory access patterns

©CoWare, Inc. 2001

CoWare N2C Analysis

Y Y EV [N [VTS N

¥ Read Access
¥ write Access 40000
q
EEEEEEEE 35000
1000000
20000
Apply

File Edit View

45000

25000

20000

15000

10000

5000

0c0

0330000000

030000000

CPU loading/SW profiling

oWare, Inc. 2001

=] CowarezC A

RIR[alaleey i)

From |3
ot

Page | 10000

)
O
o ew

i Fiction

O

193800

v o s
Aoty e ottia) L]

I
P

31

Design results

©CoWare, Inc. 2001

0 Gantt charts show performance results
= Coware NZC Analysis =]
Edit Search View Show Help
alalajal = 1
I T T I T I

Nare 4500 46500 4700 4800 4300 5000 5100
L APE_BUS
w dap_1AENOLT I [inon " |
i) marp_1a 1l [Inon 1" |
1l dmsmp_1oMREQ!] 1 (1) I I I 11
" drrip_100UT | [[| [
B DIN_BUS LRI IR [R R R R I AT A
B4 ABUS LLCLCEEEEE TEEEEE D e T EEEEE T P PR P TEREE FU TP
55 dmxsp_2.ALE, dmysp_3.ALE, dj
b6 dmasp_2.APE, dmisp_3 APE, o
w TENOUT BUS I [inon " |
B TR BUS 1 | | {1 I |
L2l TMREG_BUS] I I I I I 11
T DOLT BUS | [[| [
1 disp_T.DIN i1 THEE T I [I R A T e
1 dmsp_5.0IN [I (mi
i Elsotware
m C_STARTUP_CODE
2 _man
i _nt
" it et
5 nemptEnable
Ll main
m pAIRD_ISR
s takeDecision throad_acoeleraion
m PIFIC_ISR o
I I H I] 1

2 [[[osa

JPEG2000 Virtex!l Pro (Xilinx) SW Platchfmc

33

-

Yosemite
Image

<:r1_l OPB Bullsltructure

T

JPEG2000 platform

© CoWare, Inc. 2001

0 Architectural exploration focused on two alternatives
— A) Implement JPEG algorithm with Wavelet transform in SW

— B) Implement Wavelet algorithm in HW

0 Architectural analysis reveals that bottleneck is not in the
Wavelet algorithm as initially expected but instead in the
code stream output writer due to memory accesses

a Without this analysis, RTL designers would have selected

the wrong HW-SW partitioning

0 Greatest gain in performance and power is achieved in

architectural optimizations

Modeling HW in the TF Abstraction

0 Some blocks may remain untimed if their timing is not
critical to the system function or performance (they’re
assumed to be fast enough)

0 Other blocks are in UTF annotated with cycle delays

— Concurrent HW threads must be attached to a clock

— Slave processes get their clock tick from the concurrent thread that
callsthem

® CoWare

SW design flow

a Abstract RTOS leve

— Functional threads are partitioned into SW processes per core
processor in a multi-core system

— SW processes may be created dynamically

— SW processes are scheduled using an abstract (generic) RTOS;
scheduling policy and process priorities are defined

— Inter-process communication is implemented (shared memory,
semaphores, sockets, mailboxes, etc)

0 Target RTOS level

— Abstract RTOS calls are now mapped to atarget RTOS with
further refinement of communication and scheduling

© CoWare, Inc

© CoWare, Inc. 2001

® CoWare

The RTL Implementation level

37

0 IFS generates automatically RTL implementation of the

platform from the specifications of the TF platform

0 HW blocks are implemented at the RTL level as follows:

— All HW (concurrent and slave) processes are implemented as
clocked processes

— Functional communication channels are refined to handshake bus

protocols

BCA example: full-handshake protocol

38

Producer

0

Produce

nk

Consumer

19

Full Handshake protocol

_| Consumer|

clkl

R =—=—l| 10
%

clk

N

After in-lining of communication channel processes
into the master and slave blocks

© CoWare, Inc. 2001

CoWare

Conclusions

© CoWare, Inc

0 SystemC supports modeling abstractions for HW/SW co-design

from Functional to RTL
0 Abstraction levels can be mixed for gradual refinement
0 Benefits

Fast design exploration & HW/SW partitioning
Enables synthesis of communication

Fast |P embedding & retargeting

Orders of magnitude faster than RTL verification

» Coare
SystemC™ Community |
e~ o e : - 4-
e "“\‘ - . w o w;.... :_M
e I " .
Tt ew (SYSTEMC |, ™
(10}
o Y wr @ ™
¥ 5 Sonv]
ianford [iniversity

40

Backup slides

0 TF communication details
0 Key modeling paradigms

a CoWare

TF communication revisited

©CoWare, Inc. 2001

a Timed Transactional (TT)
— Mostly for SW modeling
— Deélay isin absolute time units
0 Cycle Accurate Transactional (CAT)
— For HW modeling including Bus/ Memory architecture
— Delay in clock cycles

@ CoWare

Cycle Accurate Transactional Modeling

© CoWare, Inc. 2001

0 Models transactions on a bus between bus masters & daves
— Cycleaccurate
— Busprotocol specific
— Arbitration, address, datacycles
0 Protocol independent generic API alows re-use
— Mapping to abus protocol through protocol specific libraries (re-use)

— Specify attributes of a transaction: data width, data size, burst, status,
etc

Benefits of CA Transactional modeling

© CoWare, Inc. 2001

0 Platform architecture exploration and optimization

Bus hierarchy: number of buses, assignment of resources to buses
Memory hierarchy / size

Cachesize

HW-SW partitioning

Analysisfor bus throughput, bottlenecks

0 Much less user code than in RTL

Key modeling paradigms

0 Mode of hierarchy and re-use
0 Model of

— Process execution
— Process communication
— Processsynchronization

a Modd of Time

Model of hierarchy and re-use

0 All behavior is described in processes; statementsin a
process execute sequentially

0 Processes are “encapsulated” in modules which have ports

0 All external communication takes place exclusively over
module ports (to enable module re-use)

0 Inside a module processes can communicate over shared
variables and internal channels

0 Modules are interconnected through their ports to
communication channels

s CoWare

% Co%e

Model of communication

0 Abstract functional
0 Transactional
— Timed
— Cycleaccurate/ bus protocol accurate
0 Bus Cycle Accurate communication
— Cycle & Pin accurate

47

Model of time

©CoWare, Inc. 2001

o Untimed
a Timed (but not clocked)
0 Clocked (cycle accurate)

48

Model of process execution

© CoWare, Inc. 2001

49

o Concurrent jprocess execution
— Communication & synchronization

0 Sequentid (in-lined) process execution

— Abstract point-to-point & multi-point sequential communication

Concurrent processes

©CoWare, Inc. 2001

o SC_THREAD process
Thread type (can be suspended)
Process execution istriggered from its sensitivity list
Process can suspend at await() statement & resume
Has a stack to store its state
Can have static and/ or dynamic sensitivity
o SC_METHOD process
— Method process (functional call, can not suspend)
— Process execution istriggered from its sensitivity list
— Hasstatic sensitivity only

Concurrent process communication

© CoWare, Inc

2001

51

0 Concurrent processes communicate over a concurrent
channel (=user defined module)

— Shared variablesfor intra-modul e communication
— Signasfor intra- & inter-module communication

— Signalsareaspecial form of concurrent communication channel
(for HW, supports eval uate-update paradigm)

Model of process synchronization

©CoWare, Inc. 2001

52

a Concurrent processes synchronize over events
sc_event my_event; // fundamental sync object
0 Twotypes of process sensitivity:
— Static : wait() without arguments; sensitivity in constructor
— Dynamic: changes during simulation
o wait(evl|ev2|...) // onany one or more events
o wait(evl & ev2 & ...) // on all events
o event.notify(0) // next deltacycle
o event. notify(delay); // timed notification
o event.notify(); // immediate notify, notinv1.2
0 Mutex& semaphores built as libraries on core sync objects

Sequential (in-lined) process execution

© CoWare, Inc. 2001

0 A process triggers execution of a slave processin-lined
with itself

0 Emulates function execution as in C programs

Multi-point sequential communication

© CoWare, Inc. 2001

A All Al12 A13
A21 A22
=y

O]—

Abstract model for a bus communication:

A transaction by a master causes all slaves on the busto be called;
Based on index value the slaves decide whether to respond or not
Multi-point will be later refined into areal bus communication
with address decoding & arbitration, concurrent behavior

CoWare

Sequential & concurrent communication combined

© CoWare, Inc. 2001

BW: blocking write with time-out
BR: blocking read with time-out

Producer Consumer

bWrite bRead
BW :0 FI FOO: BR 0

clkl clk2

FIFO channel

5 CoWare

