

	Simulation	Real time (s)	Comments
	speed	simulated in 10h	WCDMA test platform @100 Mhz
	100 MHz	3,300,000x	Real chip
SoC			
Emulation	300 kHz	10,000x	Estimated
	3 MHz	100,000x	
UTF			
Timed Trans.	300 kHz	10,000x	Minimum required for SW/firmware developer
CATrans.	30 kHz	1,000x	Minimum required for platform developer
BCA	300 Hz	10x	With ISS for core
RTL	30 Hz	1x	No ISS

Slav	<pre>SC_MODULE(consumer) { sc_inslave<int> inl; int sum; // state variable void accumulate() { sum += in1; cout << "Sum = " << sum << endl; } SC_CTOR(consumer) { SC_SLAVE(accumulate,in1); sum = 0; // initialize } };</int></pre>	©CoWare, Inc. 2001
12		CoWare

Interface Synthesis (IFS)

□ What you get from IFS

25

- Ability to configure your platform with multi-master, multi-layer, multi-bus and hierarchical memory architectures
- Cycle Accurate processor model, e.g. ARM926-EJS CCM model
- Fast Cycle Accurate model of the above platform
- Automatic mapping of your UTF system to this platform including generation of boot code, device drivers, address maps, address decoders in the bus and bus bridges
- IFS is an enormous productivity tool since you don't have to know details about the core, its bus protocol, pin timing, etc. because the IFS tool has knowledge about the core and its platform.
- You can now very easily (in a matter of hours) change your HW-SW partition at the UTF level or choose a different core or modify your platform, regenerate the cycle accurate model of the system and analyze the impact of your changes on system performance

© CoWare, Inc. 2001

