
1

Page 1

R

4/25/2002

Bridging the High-level and Implementation
Divide: Mission Impossible?

Victor Konrad
April 2002

R

4/25/2002

Agenda

� Background

� Philosophy

� Experiments in speedup of HLM

� Conclusions

� Disclaimer: view of HLM from the (narrow) vantage point of large
general-purpose microprocessors

2

Page 2

R

4/25/2002

A somewhat pessimistic report from
two projects

� Yosemite (R.I.P.) HLM

– Project cancelled

� IA 64 project X (HLM R.I.P.)

– Project still alive, but no HLM

� Information is 1.5 – 2 yrs old

– But still valid

R

4/25/2002

The Yosemite project HLM

� Yosemite was to be next-generation Itanium
– Was developed alongside Itanium for several years

– Extended honeymoon period

� Yosemite HLM
– Structural iHDL

– Written by architects with a microarchitectural bend

– Many thousands of lines of code

– Clock accurate

– Intention: match RTL on major signals

� Objectives (and wishful thinking)
– Architects’ sandbox

– Mixed-level simulation with RTL (plug-and-play)

– Checkers for RTL validation developed early

– FV…

3

Page 3

R

4/25/2002

A word about iHDL

� Developed ~15 years ago, in continuous use since
– Slowly being phased out in favor of Verilog

� Explicitly synchronous, logic-design oriented
– “glorified netlist”

– Some high-level built-in constructs (*,+)

– very rich bit-vector manipulation features
» a[5:2] & b[16:11] & '1::(b-a) := (c[b:a] & '0::9) + $CVN(31);

– Missing basic high-level capabilities (e.g. user-defined behavioral procedures)
» De-prioritized due to lack of interest from users

– Underlying timing paradigm: FSM (no explicit concurrency, threads etc.)

� Very slow simulation speed
– Itanium ran at ~1Hz

– Yosemite HLM very slow for an “ architect’s sandbox”
» Harder to use word-level parallelism, NetBatch & other techniques from validation

R

4/25/2002

Approaches to speedup

� Use C/C++ - based modeling (SystemC, CynApps)
– Was making its first strides when the project was cancelled

– Showed good speedup, though probably insufficient

� Library of high-level models
– Encompass ubiquitous structures

– Use simple simulation paradigm (“Execute this code in 3 cycles”)
– Tuned for simulation performance

� Classification of library elements
– Simple logic design structures
– Elaborate logic design structures
– Micro-architectural primitives

4

Page 4

R

4/25/2002

Simple logic design primitives
(compiler enhancements? Macros?)

� Paradigm: c:= a+b, c:=a*b etc.
– Language built-ins
– Software executable model bears no resemblance to the final hardware

� A ubiquitous primitive: “find first”
In: x = (0 1 0 0 1 1 0 1 0 0)
Out: y = (0 0 0 0 0 0 0 1 0 0)
Quasi-C solution:

y=0
if (x[0]==‘1) y[0]=‘1;
else if (x[1]==‘1) y[1]=‘1;
else if (x[2]==‘1) y[1]=‘1;
…
….

Better: y = (-x) & x
Proof:

~x = (10 1 1 0 0 1 0 1 1)
(~x) + 1 = (10 1 1 0 0 1 1 0 0)

x AND ((~x) + 1) = (0 1 0 0 1 1 0 1 0 0) AND (10 1 1 0 0 1 1 0 0) = (0 0 0 0 0 0 0 1 0 0)

R

4/25/2002

Elaborate logic structures: PLA

� PLA:
y1 = f1(x1, x2, …xn)
y2 = f2(x1, x2, …xn)
…

ym = fm(x1, x2, …xn), where fk are sums of products

equations Espresso
Optimized
Equations

(fewer literals, terms)

iHDL
compiler

C-code

Problem: Espresso is a hardware optimizer, not tuned to improve performance
of the software model!

Equations
In iHDL

iHDL
compiler

C-code

Simple-minded approach:

A better approach:

5

Page 5

R

4/25/2002

New algorithm: PLOP

� At the core of PLOP is a procedure similar to the recursive
splitting which occurs in TAUTOLOGY of Espresso

– Different heuristic of choosing the splitting variable

� Allows flexible memory/speedup tradeoffs

� Heuristic, but a very good one:
� Tested on ~40 PLAs from Itanium and Banias: speedups of 3x-20x

achieved

� A modification of this algorithm reduces significantly dynamic
PLA power: patent pending

equations Espresso
Optimized
Equations

(fewer literals, terms)

PLOP Optimized
C-code

R

4/25/2002

Microarchitectural primitives

� CAMs, FIFOs, LIFOs, pipelines
– Modeled in (more or less) straightfoward ways

� TLB
– Structure found in all microprocessor designs
– Used for mapping of virtual address to physical address
– Given a virtual address, determine if the data is contained within a page which is

currently in memory
– Hardware scans a list of pages and determines if the given address is contained in

any of them.
» If so, translate; if not found, page fault

– The hardware scan is in parallel on all entries of the array, but this algorithm, if done
in software, is linear in the number of entries in page table

» Very time-consuming in simulation: TLB activated for every memory access

Appears to be another application of hashing, but it is not:
Determining if an address is within a given page requires a masking
operation, and the mask is specific to each page.

6

Page 6

R

4/25/2002

Better software algorithms for TLB simulation

� Found and implemented an algorithm which implements the
procedure in logarithmic time

� Discovery: Problem is isomorphic to that of fast subnet-based
routing

– A very important problem in networking

� See: “Fast Longest Prefix Matching: Algorithm, Analysis, and
Applications”, Marcel Waldvogel, Ph.D. Thesis, ETH Zurich, 2000

R

4/25/2002

When the project was cancelled…

� …we pretty much convinced ourselves that, speedwise, HLM was
doable

– Combination of C/C++ programming and faster models

� But the other, more important business/methodology issues
remain unresolved:

– Can we make the HLM a clock/signal accurate golden model for RTL?
– Can we make its modules plug-and-play interchangeable with RTL?

And, most importantly,

Is there sufficient return on the investment of building and maintaining
this model (and keeping it in synch with the RTL)?

7

Page 7

R

4/25/2002

HLM lessons from project X (McKinley
follow-on)

� Project X RTL based on existing McKinley, changes in certain
units.

� No high-level model for McKinley

� Question: Is there a sufficient ROI in retrofitting an HLM to
existing RTL?

� Answer: no

– Thus HLM was canned, but not before I had lots of fun reverse-
engineering the McKinley RTL and writing a high-level model for it….

R

4/25/2002

Summary

� Each successive generation of Intel microprocessors has toyed with
high-level modeling, with limited or no success.

– Hope springs eternal: even as we speak, new experiments are underway

� Missing is the bridge between HLM and RTL

– No progress unless we have an HLM model which
» Is orders of magnitude faster than RTL
» Is cycle- and major signal- compatible with RTL
» Its modules can be plugged seamlessly into an RTL model

� No ROI for proliferations

� High-level synthesis?
– Likely doable for narrower, special-purpose domains of applications (DSP etc.)
– Not yet there for microprocessors

