
Session 1.1 1

The Future of High-Level Modelling and System Level
Design:

Some Possible Methodology Scenarios
 Grant Martin

Cadence Design Systems
2001 Addison Street, Third Floor
Berkeley, California 94704 U.S.A.

+1-510-647-2804

gmartin@cadence.com

ABSTRACT

We discuss the future of high-level modelling in the context of
system-level design, as the two concepts are inextricably
interlinked. This is described as several possible methodology
scenarios for the future of system level design as it unfolds
within the electronics industry. Although these scenarios are
presented as orthogonal, of course in actual fact the future
may present us several of these simultaneously. The key
methodology challenges that prevent the widespread adoption
of high-level modelling and system-level design will be
discussed.

1. INTRODUCTION
The fate of high-level modelling within the electronics industry is
inextricably intertwined with the fate of system-level design.
System-level design has been discussed for many years, yet it has
hardly become the natural starting point for the design process for
most electronics design engineers. In the hardware domain, most
design activities for individual designers start at the RTL level
with a textual specification passed from on high. In the software
domain, most design activities start with bashing C code out in an
integrated development environment.

In fact, system-level design, as practiced today, has many of the
attributes of a cult. Arcane notations, obscure mathematical
jargon, the prevalence of gurus and acolytes, robes and sandals,
weird incantations and self-flagellating rituals are all attributes of
system-level design shared with cult religions. The EDA industry
would like to break system level design, and high level modelling,
out of its cult-like status, primarily to grow the EDA industry and
revenues, but has not yet found the appropriate magic formula to
do this. A good survey of the current state is found in [1].

We can analyse the future possibilities for high level modelling
and associated system level design along six orthogonal scenarios
or predictive axes. Although these are presented in an orthogonal
fashion, it is of course much more likely that the real future will
contain a mix of these possibilities along with others as yet
undreamed of. Thus we could view these as six ‘corner cases’
against which we can test our hypotheses on system level design.

These scenarios can be briefly summed up as:

1. The Cult scenario, in which high level modelling
and system level continues to be the preserve of a
few gurus and acolytes. Here ritual replaces
results.

2. The Niche scenario, in which high level modelling
and system level design has successes in niche
design domains only – for example, dataflow
algorithms, or the design of finite state machines.
This is the current predominant state.

3. The Platform-Based Design scenario, in which
almost all electronics product design is based on
developing derivatives of complex fixed and
reconfigurable, application-oriented platforms
provided by a number of suppliers.

4. The Hardware scenario, in which design moves
radically from software and soft-designed
reconfigurable logic to more efficient hardware
implementations.

5. The Software scenario, in which almost all design
is done by developing software variations on a few
fixed platforms (which may also contain
reconfigurable logic, but designed in a ‘soft’ way).
This is a close variant of the third scenario.

6. The Optimistic System Level Design Scenario, in
which most design engineers do indeed move up in
abstraction to the system level, and design involves
the building, modification and reuse of high-level
models in an overall system design methodology,
with appropriate design flows through to
implementation.

We will describe these scenarios in more detail, especially with
respect to their methodology implications and implications for
wider adoption, and then conclude with some ideas about the
likely future of high level modelling and system level design.

Several driving factors or enablers will have a big impact on the
unfolding of the future. The relative importance of design drivers
will have a large effect on determining which scenario(s) emerge.
These drivers include: cost, which will drive towards platforms;
energy, which will drive towards dedicated hardware
implementations; schedule, which will drive towards platforms or
software; and manufacturing cost, which will drive towards
dedicated hardware. Different applications will likely emphasise
different drivers; thus we may not see one scenario prevail.

Whichever scenario(s) prevail will have a big impact on the state
of modelling and system design tools. The current state is
discouraging. As indicated in [2], “electronic system level is
becoming an issue. As more design work moves up to this level,
design engineers are finding the available tools inadequate.”

Session 1.1 2

2. THE CULT SCENARIO
In the cult scenario, system level design is the preserve of a few
high priests or gurus, and their acolytes. High-level models are
created in a variety of modelling languages and notations, to be
used by a few system architects in making key architectural design
decisions. However, the high level models are surrounded by
what, to ordinary designers, are obscure mathematical notations:
“models of computation”, “formal methods”, “denotational
semantics”, “satisfiability”, and the like. These surround the
models with an air of mysticism that many designers find
impenetrable. In addition, in this scenario, the models do not
“flow” – that is, there is no well-defined design flow or
methodology in which the models can be either re-used at lower
levels of design abstraction, or transformed into designs which
can be implemented using automated tools, or generate useful
artefacts which are valuable downstream. As a result, high-level
models of systems remain perpetually disconnected from the
activities and methods used by the bulk of those implementing the
system; they grow out of date and are soon discarded if used at all.

The net result of the Cult scenario is that high-level modelling and
system level design remain the property of the cult and never
propagate into the design mainstream.

3. THE NICHE SCENARIO
The niche scenario is actually the prevalent best practice current
usage of high-level modelling and system level design today. In
particular design domains, for example dataflow algorithm
modelling and implementation, or the design and implementation
of finite state machines, some high level modelling/capture
notations together with associated tools, methodologies and
design flows have achieved reasonable success.

For example, in the dataflow algorithmic area, tools such as
Ptolemy and SPW have been used to build complete methodology
flows moving from high level models through to verified silicon
implementations [3]. The high level model consists of a dataflow
block diagram using blocks drawn from various libraries together
with user defined blocks. Block functions are captured in a
structured form of C++. The verification environment may draw
on standards-based models of various wireless, wired
communications and multimedia applications standards. Once a
dataflow algorithm is captured in a high level model, such tools
and methodologies allow co-simulation with embedded SW
running on control or DSP processors; they also allow structured
refinement of the algorithm from an untimed dataflow model to a
clocked HDL implementation, using the system model as a golden
reference model to validate an HDL-based implementation.
Generated HDL code can be synthesised, laid out and validated
using standard RTL to silicon design flows. The relative age of
[3] – 1997 – indicates that this kind of niche design flow based on
high-level models is well proven.

The problem with the niche scenario is that high-level modelling
and associated system design tools and methods remain ghettoised
in their niches. These specialised flows are the preserve of
domain experts and can hardly be expected to appeal to a mass
market of designers. Indeed, one can argue that such markets are
saturated by today’s tools and libraries.

4. THE PLATFORM-BASED DESIGN
SCENARIO
Platform-based design has been written about with increasing
frequency in recent years [4], despite some considerable
controversy about its definition. Here I define a platform as a co-
ordinated family of hardware-software architectures developed to
promote high levels of re-use of hardware and software
components in the rapid, low-risk design of application-oriented
derivative products. These could take the form of System-on-
Chip (SoC) or more complex electronic systems, and the
platforms will be offered by a number of different vendors
working in various product application domains, in the form of
both relatively fixed platforms and ones incorporating
reconfigurability.

In this scenario, platform-based design succeeds in capturing most
of the electronic product design space. We further hypothesise
that most designs will be relatively straight-forward derivatives,
based on configuring platforms, on selecting HW and SW IP
blocks from well-characterised libraries, and possibly by mapping
some functions into reconfigurable logic. The design approach
will be primarily based on configuration, and on “soft” design –
either into a SW form or programming of reconfigurable HW.

In this scenario, then, where is high level modelling required? No
doubt the platform creators would need to do some considerable
modelling to support their trade-off analysis – i.e. the choices of
which application functions to map into SW and which into HW.
The community of platform creators will form in its own way a
relatively small ‘cult’ of gurus and system architects. However
such modelling may continue to be informal, using spreadsheets,
hacked-up C/C++ models, and a variety of ad-hoc analysis
methods that do not require much formalism about high level
modelling. Most of the platform creation could continue to use
RTL based design flows and methods, just as they do today.

Most derivative design will be done using simple platform
configurators, and software programming. Verification of
derivatives may well be done using HW-assisted rapid
prototyping and emulators, given that the communications
schemes within the platforms will be well-proven and most IP
blocks will be pre-wrapped and validated to interface correctly to
the on-chip or in-system communications architecture. Thus the
need for elaborate system level design space exploration using
high level models will be greatly reduced, if not eliminated
entirely, in this platform-based scenario.

If the complexity of platforms increases, of course, then system
level design space exploration may start growing in importance,
both for platform definition and for derivative design. This will
drive high level modelling and system design tools to emerge.

5. THE HARDWARE SCENARIO
This scenario is an interesting one because it calls designers to
abandon their infatuation with software, and ‘soft solutions’ such
as reconfigurable logic, and return to the true faith of hardware
design and implementation. One leading exponent of the
hardware approach is Bob Broderson of UC Berkeley and the
Berkeley Wireless Research Centre (BWRC). As he correctly
pointed out [5] at the Design Automation Conference in 2000,
“Software architectures are at least 100 times less efficient in
power and area than hardware. That gap will increase.” In this

Session 1.1 3

view, there is no “hardware-software codesign”, because with at
least two orders of magnitude difference in power and area
between hardware and software (and often at least 10-100X in
performance as well), there is nothing to trade-off. The advantage
of direct hardware implementations of complex algorithms, vs.
time-multiplexing central processing resources, are clear.

The natural methodological implementation of this scenario is an
increasing move towards some kind of behavioural synthesis, or
direct mapping (as in the BWRC work) from a natural high level
description of the algorithms involved in a design, to hardware
implementations. Relative inefficiencies of behavioural synthesis
vs. RTL-level synthesis of hardware may become less important
as we move to deeper and deeper submicron processes.
However, the correct notation for high level modelling becomes
vital in this scenario. Classic sequential programming languages
are not at all appropriate as they lose the natural concurrency in
computation and communications, which algorithms, especially
dataflow processing, possess, and which are naturally
implemented in hardware. This motivates a variety of algorithmic
notations, from block-oriented dataflow networks as in Matlab,
SPW and other tools, to programming languages such as C/C++
enhanced with natural means for expressing concurrency (e.g.
SystemC, SpecC).

In this kind of mapping or synthesis flow, the high level model IS
the high level design and the desired tool flow is total automation
from high level algorithmic capture to optimised hardware
implementation. Although such scenarios have begun to make
progress in the signal processing and dataflow domains, control-
oriented behavioural synthesis has much progress still to make.

The primary problem with the hardware scenario is that it assumes
a return to application-specific IC (ASIC) design despite the
growing mask costs and NRE. Given that ASIC design starts are
dropping, the desire for many derivative products to be designed,
and NRE and mask costs projected at one million dollars or more
for 100 nanometre or smaller process technologies, it is unclear if
this ‘return to hardware’ can remain any more than an academic
pipe-dream.

6. THE SOFTWARE SCENARIO
The Software scenario is predicated on a future in which software
is the primary means for product differentiation and design. The
actual implementation form for ‘software’ can be in embedded
software running on various processor(s), and in reconfigurable
logic, which is defined, designed and implemented, in a ‘soft’
fashion. As the 2001 CANDE meeting concluded in one of its
infamous predictions, “hardware/software co-design is
‘irrelevant’, and … the real problem is one of mapping system
functions into programmable resources” [6]. The software
scenario is actually a variant of the Platform-Based Design
scenario, in which the platform is relatively fixed, as discussed
earlier.

We can counterpoise the arguments used for the Hardware
scenario – that hardware implementations of functions are 1-2
orders of magnitude better in power, performance, and cost
(silicon die area) than software ones, with what one might call the
4 “M’s” that favour the software approach. Hardware
implementations will cost 1 Mask set, 1 Million U.S. dollars for
NRE, 1 Month for manufacturing; and SW offers far better
Management of risk, in that mistakes can be much more easily

corrected in the field. In this scenario, all these factors combine
to steer the design community increasingly towards software-
based solutions for product differentiation.

Even if high level modelling is useful for SW design and
implementation, it is likely to be a more traditional SW-oriented
high level modelling language and notation. SDL, and UML
seem the most likely approaches to achieve wide favour in the
SW-dominated world. UML, with its multiple modelling
notations and ability to be extended through profiling, seems the
most likely high-level notation to be used. Interestingly, use of
high level models for SW design remains a distinct minority taste
at this time (2002) – for example, almost all use of UML is for
high level graphical documentation of basic software architecture,
and use of UML and SDL based code generation is quite low.
Most embedded software is created using hand-coded and
optimised C or assembler, with some use of Java and C++, but
following classical capture-compile-run-iterate development
methods.

For battery-powered, handheld devices, energy consumption is a
dominant design issue. SW is inherently much less power
efficient than hardware, as discussed in the previous scenario.
The relative importance of battery life and power consumption
may have a large impact on whether the hardware or software
scenario, or some combination, is more likely.

7. THE OPTIMISTIC SYSTEM-LEVEL
DESIGN SCENARIO
We’ve had enough of pessimistic views of high level modelling
and system level design in our first five scenarios. Let’s return to
first principles and discuss what an optimistic and feasible vision
for high level models and system level design might be.

In this vision, as described at many times and places [7,8], high
level models of subsystems become the new lingua franca of
design, not just by a cult, but by the mass of designers who move
upwards in abstraction level because to do so gives them distinct
advantages in the design process: productivity, time to design,
and lowered risk. This can involve many technologies, for reuse,
synthesis, automated code generation, formal verification, etc.,
which together with appropriate tools and methods, form an
integrated design flow from system specification through to
optimised implementation. High level modelling works with all
design styles, from customised hardware implementation through
platform design and configuration through to software-based
methods. High-level models permit design space exploration –
the appropriate amount of trade-off analysis and optimisation of
design over alternative mappings and configurations [9]. High
level models and system design tools hide the mathematical
complexities of models of computation and systematic
composition as well as formal methods, presenting design
interfaces which are tractable and understandable by a wide
community of users.

But what are the barriers to adoption of this more optimistic
scenario? They are several, and they are not new.

7.1 A Lingua Franca
First, modellers and designers require a common ‘lingua franca’
for design modelling. This can take two forms:

Session 1.1 4

• A small set of common well-defined languages and
notations within which most of the semantics of design
for various application domains can be expressed. For
example, extensions to C/C++ such as SystemC and
SpecC may fit here.

• An underlying compositional theory which allows
models captured in different ‘models of computation’ to
be combined into an overall system level model without
either losing important aspects of the system
specification (due to inappropriately basic
compositional theories) and without confronting the
designer with the underlying mathematical theories.

With such a well-defined lingua franca, models become reusable
and interoperable, two vital characteristics for designers. If the
investment in system level models is not reusable, the effort
expended in building them is wasted and designers will be
incredibly reluctant to build and validate them. If there are
competing toolsets and the models are not interoperable between
them, then again designers will be reluctant to be tied to one set of
proprietary tools, even if the models are theoretically open. In
this regard, SystemC seems the closest to a relatively open, widely
adoptable and popular high level modelling language based on
extensions to C++.

Another important note is that much of the common substructure
for high level modelling need not be directly written or read by
human beings. It is sufficient that tools can read and write the
language(s) and present usable views of the models contained
within to designers. For example, C++ is hardly an elegant, terse
or formal language, yet its ubiquitousness makes it an obvious
choice for a system design language. In my view, human beings
need to be well insulated from the more ridiculous syntax and
semantics of C++ and extensions such as SystemC. This opens up
tremendous possibilities for appropriate methodologies, high level
modelling standards, and tools, to be developed, that insulate
designers from details which stand in their way of expressing
system design intent in a natural and reliable manner.

7.2 A Consensus on Methodologie(s)
Although it is not necessary that only one methodology prevail in
the system level design space, it is important that enough designer
interest coalesce around a very few critical methodologies to
create a critical mass of design interest that will attract the
commercial EDA industry to create compelling tools to support it.
Just as the RTL to place and route flows in IC design have
become the overwhelming method for design of digital blocks and
chips, to be used in custom, ASIC and SoC implementations,
similar methods must be defined and adopted in the high level
modelling and system design world. We addressed above the
need for a common lingua franca for modelling – this defines as it
were the common syntax for high-level design. Consensus
methodologies define the common semantics that permit tools to
operate in a defined flow – so that abstract models defined using
tool X will be meaningful for analysis by tool Y.

This consensus on methodology might arise due to a single
vendor/tool arising and setting the common methodology
standards in high level modelling, or through pan-industry
standardisation efforts, or through other mechanisms. But it is
important to reach a consensus and reduce the fragmentation that
is a key characteristic of today’s system level design approaches.

In this sense, consensus on verification aspects of the
methodology is as important as consensus on design abstraction
levels and appropriate semantics.

7.3 Flow Across the Systems to
Implementation Divide
We discussed above the need to reuse models in system level
design in order to justify their creation. It is also essential that
high level models have reuse across the implementation process,
either as inputs for automated synthesis of HW or SW; as
verification environments or golden models at lower levels of
abstraction; as guides for template-driven generation of
implementation, or as refinement steps in a well-defined
methodology, supported by tools, that moves designers from
specification through to implementation.

It is the lack of use of these high level models in the past that have
restricted modelling to the ‘cult’ status [8]. The ‘gap’ between
high level and implementation designers must be crossed in order
to establish a real design flow from one level (or multiple levels of
system abstraction) to another (the RTL-C level of
implementation).

We can hardly see that the world has yet achieved this state.
High-level synthesis is itself a niche possibility. More
comprehensive tools in this area are restricted in use to a very few
design groups.

8. THE LIKELY FUTURE
I discussed at the beginning the fact that the likely future will
contain a combination of scenarios. In fact, high level modelling
is not really a cult, given that the niche scenario is widely used
and adopted. The hardware scenario is unlikely to return, and yet
designers will continue to want to optimise hardware
implementations for some designs and portions of design
platforms. Thus there are two likely futures we can predict:

1. A combination of the Niche and Platform-Based
design scenarios. Here, use of niche high-level
models in domains such as dataflow and state
machines will continue with incremental
improvement. Platform-based design will grow in
usage, and methods will be found so that most
derivative design can avoid high level modelling
and system design approaches.

2. The fulfilment of the optimistic system level design
and high level modelling scenario, which subsumes
all the other scenarios. This is the true ‘Radiant
Future’ of system design to which we aspire. But
to realise this future, the “integuments must be
burst asunder”.

Is this second scenario the likely one? Enquiring minds would
like to know…and fervently hope so. One point of setting up a
group of straw men, and then knocking them all down, is to
convince the readers, and listeners, of both the inevitability and
desirability of the future which is left standing…

What actually will happen in this future will depend on the key
properties and system level drivers which must be optimised.
Again, if different application domains drive us in different
directions, the likely future will consist of a combination of
scenarios.

Session 1.1 5

9. ACKNOWLEDGEMENTS
I would like to thank Frank Schirrmeister for his insightful
feedback and suggestions for improvement, and Roberto
Passerone for his review of the paper.

10. REFERENCES
[1] Gabe Moretti, “System level design merits a closer look”,

EDN Europe, February 2002, pp. 22-28.

[2] Gary Smith, Daya Nadamuni and Wei Tang, “ASIC Design
Times Spiral Out of Control (Executive Summary)”, Gartner
Dataquest Report 103694, January 30, 2002, p. 2,

[3] Frank S. Eory, “A core-based system-to-silicon design
methodology”, IEEE Design & Test of Computers, Volume
14, Issue 4, Oct.-Dec. 1997, pp. 36-41.

[4] Alberto Sangiovanni-Vincentelli and Grant Martin, “A
Vision for Embedded Systems: Platform-Based Design and
Software Methodology”, IEEE Design and Test of
Computers, Volume 18, Number 6, November-December,
2001, pp. 23-33.

[5] Chris Edwards, “Panel weighs hardware, software design
options”, EE Times, June 8, 2000. URL:
http://www.eetimes.com/story/OEG20000607S0043

[6] Richard Goering, “Cande charts EDA’s future”, EE Times,
October 3, 2001. URL:
http://www.eetimes.com/story/OEG20011003S0071

[7] G. Martin and B. Salefski, “Methodology and Technology
for Design of Communications and Multimedia Products via
System-Level IP Integration”, Designer Track of Design
Automation and Test in Europe (DATE-98), Paris, France,
February, 1998, pp. 11-18.

[8] G. Martin, “Design Methodologies for System Level IP” ”,
Design Automation and Test in Europe (DATE-98), Paris,
France, February, 1998, pp. 286-289.

[9] E.A. de Kock, G. Essink, W.J.M. Smits, R. van der Wolf, J.-
Y. Brunel, W.M. Kruijtzer, P. Lieverse, and K.A. Vissers,
“YAPI: application modeling for signal processing systems”,
Design Automation Conference, 2000, pp. 402-405.

