
1

EDPEDP--20022002

Scaling MethodologyScaling Methodology
Dan Smith

Director HW Engineering

dsmith@nvidia.com

EDP-2002

Introduction

NVIDIA

NVIDIA’s growth

Methodology Group

NVIDIA’s methodology beginnings

How the methodology has changed
Philosophy

Practicality

Examples

What’s the future like

2

EDP-2002

NVIDIA Characteristics

NVIDIA is the global leader in advanced
graphics processing technology for mainstream
platforms

GPU’s, Platform Chipsets, XBOX chipset

Frequent design refreshes

Large, complex designs

Verilog RTL and C++ behavioral

COT back-end

Design team primarily in Santa Clara, but
reasonable number of people in other areas

EDP-2002

NVIDIA Growth

NVIDIA has grown significantly in many
dimensions over the last 5 or so years

Revenue

0

200

400

600

800

1000

1200

1400

1600

1996 1997 1998 1999 2000 2001 2002

M
il

li
o

n
s

3

EDP-2002

Design Growth

Many simultaneous design projects

Design complexity is growing

Size in Millions of Transistors

0
10
20
30
40
50
60
70

NV1
NV2

RIV
A 12

8

RIV
A T

NT

RIV
A T

NT2

GeF
or

ce
 2

56

GeF
or

ce
2

GeF
or

ce
3

XGPU

EDP-2002

Compute Server Growth

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number
of

CPUs

Sparc/Solaris-based machines x86/NT X86/Linux

Riva128Zx Tape-out
RivaTNT Tape-out

RivaTNT2 Tape-out

GeForce256 Tape-out

Ju
ne

-9
7

Ju
ly

-9
7

A
ug

-9
7

Se
p-

97

O
ct

-9
7

N
ov

-9
7

D
ec

-9
7

Ja
n-

98

F
eb

-9
8

M
ar

-9
8

A
pr

-9
8

M
ay

-9
8

Ju
ne

-9
8

Ju
ly

-9
8

A
ug

-9
8

Se
p-

98

O
ct

-9
8

N
ov

-9
8

D
ec

-9
8

Ja
n-

99

F
eb

-9
9

M
ar

-9
9

A
pr

-9
9

M
ay

-9
9

Ju
ne

-9
9

Ju
ly

-9
9

A
ug

-9
9

Se
p-

99

O
ct

-9
9

N
ov

-9
9

D
ec

-9
9

Ja
n-

00

F
eb

-0
0

M
ar

-0
0

A
pr

-0
0

M
ay

-0
0

Ju
ne

-0
0

A
ug

-0
0

Ju
ly

-0
0

GeForce2/MX Tape-out

GeForce2/GTS Tape-out

Se
pt

-0
0

O
ct

-0
0

N
ov

-0
0

D
ec

-0
0

Ja
n-

01

F
eb

-0
1

GeForce3 Tape-out

XGP Tape-out

M
ar

-0
1

A
pr

-0
1

M
ay

-0
1

Ju
ne

-0
1

Ju
ly

-0
1

A
ug

-0
1

Se
pt

-0
1

NexGen2 Tape-out

IGP/MCP Tape-out

NexGen1 Tape-out

Ja
n

02

4

EDP-2002

Methodology Group

Central group responsible for standardizing,
enhancement, and automation of NVIDIA’s
methodology

Common methodology for platform and GPU
products

Practical approach

Manage globally used EDA vendor tools

EDP-2002

Methodology Beginnings

Several generations of GPU’s done by same team
One designer per unit

No specialization

Little turn-over

Design code base and tools code base copied from
project to project

Consistent high level methodology

Lots of variability at the implementation level

Many “standard” methodologies in use
simultaneously on the same chip

Custom tools crafted for a specific chip or unit

5

EDP-2002

Forces Driving Methodology Change

Volume

Time to Market

New Markets

Hitting all market
segments

Lowering Cost

Competition

Engineering staff growth

Increased design
complexity

EDP-2002

How to scale design methodology

Continually find better ways to do design

Standardization
Reduces the learning curve

Provides for better reuse

Helps ensure consistent quality

Combines the best practices from all engineers

Allows global upgrades/enhancements

Documentation and training

Automation

Communication

Continue to hire great engineers

Specialize

6

EDP-2002

What to Standardize

Anything that takes engineering time is a candidate
for standardization

Verification environments

Synthesis/Timing/Layout flows

Emulation

Manufacturing test methodology

Formal verification

Custom scripts, process flows, and software tools
should be written only once

Selection and use of commercial EDA tools

All design rule checks

EDP-2002

Drawbacks to Standardization

Can slow adoption of new techniques if they
have to work globally before being used at all

Requires dedicated staff to support

Different chips may be best designed with
different techniques

Difficult for chip designers to customize tools
quickly to get chip’s out.

7

EDP-2002

How to Standardize

Programmers develop robust tools and flows,
scalable across projects

Tool experts working with chip designers and
programmers

Hire great chip designers, encourage them to
innovate, and leverage the work they do across
other projects

Plan ahead, develop and acquire technology, and
be opportunistic is deployment

EDP-2002

Standardization Hurtles

Picking the right methodology and getting
everyone to agree on the selection

Disruption to projects during transition period

Projects sometimes diverge from common flows as
they get close to tape-out

Common flows/tools usually more complex than
those written to work on a particular project

“Owner” of flows/tools doesn’t usually have the
same sense of urgency as those on a project

8

EDP-2002

Structured Tool & Flow Development

Unlike EDA companies, it does make sense for chip
companies to develop custom code for particular chips or
design types.

All tools and flows should use common set of libraries for
accessing information

Clear designation between chip specific and chip
independent code. Subclass chip independent classes to
extend or specialize functionality

Tool independent configuration files for all chip specific
information

Consistent set of tools and libraries “frozen” for each design

EDP-2002

Synthesis - Legacy

Originally
>20 different ways to go about automating synthesis

Synthesis responsibility with designer of unit

Some were attempts to standardize and used by many
modules within a unit

Impossible to change things globally, like cycle time

Many copies of design quality scripts

Chip designers had problems moving from block to
block as they had to relearn these relatively complex
environments

No documentation meant that new engineers had a
steep learning curve

9

EDP-2002

Synthesis - Common

Merged good characteristics from all environments
into one automated and documented flow, used
across all projects

Automatic dependency generation

Standard script structure

Centralized default constraints

Centralized library definitions

Automatic invocation of design quality scripts

Common code base, freezable and tweak-able for
individual projects if necessary

Simple setup but completely customizable without
breaking automation

Automatic checking of failure conditions

EDP-2002

Resources

NVIDIA has always had a shared pool of
resources

Compute servers: linux and solaris

Network and file servers

EDA tool licenses

Sharing requires additional priority schemes as
the number of projects grows

Simple scaling of resources breaks all sorts of
things

Need to get more sophisticated about our use of
resources

10

EDP-2002

Manufacturing Test - Traditional

100% scan

ATPG patterns for all stuck-at faults

At-speed Functional patterns for detecting all
speed faults and doing speed characterization

Test cost expensive per chip
Large chips with huge patterns sets

No characterization or optimization of shift speed

Functional patterns require tight timing tollerances

Minimal FA

EDP-2002

Manufacturing Test - Today

Automatic structural tests for transition faults

Automatic tests for chip delay characterization

Better process for isolating faults based on
structural tests – both transition and static faults

Techniques for compressing vectors

New techniques for improving coverage

Logic optimized to run structural tests fast

Characterization of various pattern sets to
optimize test programs

Requires much larger investment in time,
engineers, and capital

11

EDP-2002

Manufacturing Test - Future

Continual drive towards lower cost test
Timing critical testing moved on-chip

Critical timing relationships for functional testing

Analog interfaces

PLL

Structural vector compression

Higher quality vectors
Bridging fault models

Higher transition fault coverage

Better fault isolation techniques

EDP-2002

Tracking the Design Process

Design process is a complex and involved
process taking many people many months to
accomplish

Problems:
Engineers and managers need to understand the
flows and where their chip is in the flow.

Need to better manage revisions of design files to
ensure that the proper set was used for building
the chip, as well as for all verifications steps along
the way.

12

EDP-2002

Design File Revisions - Traditionally

Files are kept in a source code control system

Latest revision number of a file is considered the
revision to be used.

Individual engineers “sync” to a set of files and
perform some activities which might span many
days, and then check in the resulting files.

Leads to confusion on what tools were run with
what revision of the files. Relies on very careful
engineers with an in-depth knowledge of the
process to manage successfully

Big waste of time and hit to schedules

EDP-2002

Design File Revisions - Future

Mechanism for formally specifying a process

Database for tracking:
execution of process activities

revisions of design files involved in the process flow
executions

checkins to source code system

13

EDP-2002

Tracking Tools

Tools will read tracking database and process
description files. These can be used to:

Verify before running a process that all the input
files are available and up to date.

Automatically launch process flows when input files
have been updated

Ensure all verification steps have been run on the
file revisions used to tape out a chip

EDP-2002

Conclusion

Nothing is a substitute for intelligent, diligent
engineers working well together

Well thought out, standard, automated processes
will enable growth without compromising quality or
efficiency

