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Abstract

Recent advances in Field-Programmable Gate Arrays
(FPGAs) allow more designs to fit into a single device. Par-
tial configuration at run time would allow multiple indepen-
dent applications to share chip resources such as logic
blocks. Configuration sequence of applications is unpre-
dictable, therefore, resource allocation has to be done on-
the-fly. This paper introduces chip level resource allocation
algorithm that is implemented in the hardware. This ap-
proach provides fast allocation over the software ap-
proaches assuming there can be sufficient Operating
System (OS) support. Our approach also makes feasible
self-configuration through on-chip resource manager. 

1 Introduction

Since the emergence of configurable devices, configura-
ble computing has demonstrated significant success in map-
ping computational intensive applications to hardware.
Networking applications, portable products, embedded
controller including general purpose processors are some of
the examples that have benefited from reconfigurable com-
puting systems. Advanced submicron technologies enable a
complete design on a single chip. Increasing density and
speed of FPGAs lead to the adoption of IP core based Sys-
tem-on-Chip (SoC) designs as a new paradigm. Embedding
microprocessors into the SoCs is the result of these techno-
logical advances. Moreover, OS Support and new futures to
make FPGAs more efficient and flexible are on the horizon.
Now, it is time to explore new paradigms to determine the
emerging trends in reconfigurable computing.

As FPGAs become larger and faster, large number of
components can be fitted into them. Using software algo-
rithms, design tools can map and place a design into a target
device. Configuration of the targetted device can be done at
run-time (known as Run-Time reconfiguration, RTR). The
ability to configure parts of the device without disturbing
the rest (partial configuration) would allow greater flexibil-
ity. Sometimes this process may require swapping of com-
ponents in and out due to size and location restrictions.

These partial configurations have to be done with pre-
scheduled orders and into the pre-allocated areas. 

Configurable computing is also dedicated to a specific
application. The whole device can not be used by other ap-
plications during the runtime, because current design trend
doesn’t support multiple applications for a single configura-
ble device. On the other hand, applications often do not use
all the resource on the chip (depends on the size of the chip).
The unused partition of FPGA can not be configured for
other applications. 

It is desirable for related applications to share the hard-
ware platforms and components. Sharing whole configura-
ble resource or part of it can be accomplished through
operating system task scheduling algorithms as long as the
designs do not overlap. Again all designs have to be pre-al-
located and pre-scheduled. Once a design is mapped, it can
be scheduled dynamically for the same pre-allocated loca-
tion during the run time. However, making placement deci-
sion on-the-fly requires careful resource management.
Applications need to know the available resources that can
be used to map by their designs. 

Chip resources can be allocated independently among
the applications through software approaches. However,
on-chip resource allocation is the most efficient way to ac-
complish this task. Giving the resource allocation functions
to configurable computing device may accomplish two ma-
jor advantages over the software approaches.First, alloca-
tion is much faster than its software counterparts. Second, it
makes feasible to apply chip level placement and routing
on-the-fly. In this paper, we describe an on-chip resource al-
location approach, that may lead to efficient component
configuration and high component reuse through on-chip-
resource manager. Our proposed resource allocation
scheme  achieves fast resource sharing and truly on-the-fly
configurations. 

The rest of the paper is organized as follows. Section 2
summarizes related work. Section 3 details the resource al-
location algorithm. Section 4 describes the resource alloca-
tion management and shows the results of simulation. The
last section presents the conclusion of this paper.



2 Related Work

Compile-Time Configuration (CTC) is the simplest and
the most commonly used approach for configurable com-
puting machine implementation. All of the chip resources
are dedicated to design tools which arrange the logic cells
on FPGAs with various cell placement techniques[10] e.g.
simulated annealing, placement by partitioning, etc. Once
the configuration is loaded, it will remain constant in the
FPGA through out the application lifetime. First attempt to
overcome this limited device reuse problem is Run-Time-
Configuration (RTR). After completing the placement of
several designs for the same targetted device, RTR applica-
tions uses dynamic allocation scheme that re-allocates con-
figurable hardware through downloading configuration
data of these designs at run-time[1,3]. Sequential configura-
tion of FPGA has been implemented successfully by several
systems. A more flexible approach than sequential configu-
ration is configuring subsets of the logic in the reconfig-
urable device e.g RRANN-2[2]. This approach is known as
dynamic partial configuration. Placement algorithms used
for compile and run time configurations are optimal but
slow due to software implementation. In addition, they
don’t support resource sharing for multitasking.

The Dynamic Instruction Set Computer (DISC) [4] was
developed to support demand-driven modifications of its
instruction set takes advantage of partial FPGA configura-
tion to implement dynamic instruction paging. DISC in-
structions are designed once for multiple locations on the
FPGA to overcome instruction overlapping. DISC is the
only application that schedules these precompiled instruc-
tions through configuration libraries. While DISC is execut-
ing on reconfigurable machine, Programmable Reduce
Instruction Set Computers, (PRISC) [5] introduces Pro-
grammable Functional Units (PFU) in the context of RISC
datapath in addition to RISC hard core. Applications can
add some custom instructions into the PFUs before starting
execution. Design of an instruction is pretty much the same
with compile time configuration. PRISC controller chooses
which FPU is going to implement these instructions.

Self-modifying, On-the-fly Alterable Logic (SONAL)
[6] as a coprocessor, has a similar approach for dynamic
configuration but it requires hardware enhancement to en-
able internal configuration loading. An extra memory,
small SRAM, added to SONAL keeps as many configura-
tions to load as needed. Configuration data can be down-
loaded into the extra memory without disturbing operation
on the FPGA. A controller manages the configuration based
on order of coming internal or external requests. 

Recently on-line placement algorithms have been intro-
duced to make resource sharing of configurable computing
machines among the applications and provide fast place-
ment. These algorithms have been implemented in soft-
ware. First fit, best fit, bottom-left and two dimensional

versions of these algorithms are proposed and tested for va-
riety of the applications[7]. Furthermore, local repacking,
order compaction, and genetic algorithm approaches are
represented to find free resource on partially reconfigurable
FPGAs[8]. In the local repacking, first a quadtree decompo-
sition of the free space is used to find a subarray which con-
tains sufficient cells, then two-dimensional strip packing
method is used for repacking. In the ordered compaction
method, a favourable location is allocated for a task. if there
are tasks in this location, these are slided in one direction. A
genetic algorithm is a probabilistic search method. Possible
solutions are listed in a data structure for evolution. These
software approaches are used by a controller application to
dynamically schedule tasks. 

3 Allocation - Deallocation Algorithms 

Dynamic reconfiguration is usually performed by soft-
ware systems. These systems simply provide static schedul-
ing through dynamic downloading of configuration of
preallocated cells of an FPGA. To configure different cells,
hardware design has to recompiled for these locations to be
re-routed and re-placed. Resource sharing is a way of allo-
cating FPGA logic resource so that each application exe-
cutes independently. In that case of on-line placement
decision, resource allocation must be efficient. All of the
published allocation algorithms, we know of, are based on
software implementation.   

The problem of logic-block allocation is similar to that
of memory allocation which has been studied for years.
Memory allocation deals with the memory cells that are ar-
ranged in one dimensional array fashion. Logic block ar-
rangement in most FPGAs are arranged in two dimensional
matrix architecture. Cell allocation in such systems can be
done in both ways, one dimensional or two dimensional ar-
ray. Hardware implementation of cell allocation algorithm
based on optimized binary buddy system[11] takes advan-
tage of the speed of a pure combinational-logic system. This
approach also helps the development of on-chip resource
management systems which may support self configuration
and increase flexible component reuse..

Figure 1: The most common FPGA architecture 
(Sea of Gates)

FPGAs consist of arrays of logic modules that provide
gate level functionality and interconnect resources. The log-
ic blocks are cable to implement 4-input 2-output simple
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boolean logic. Two type of logic blocks have been favored
in commercial FPGAs: Lookup Tables (LUTs) and multi-
plexers. Interconnect resources provide routing paths to
connect the inputs and outputs of the logic blocks and I/O
pins of device onto each other. Versatility of the FPGAs de-
pend on the interconnection structure in the device. Figure
1. shows the most common structure of the FPGAs

In this paper, we introduce cell allocation algorithm
which is drived from Binary Buddy System. Operation con-
sists of finding free locations and marking free locations of
requested size. A bit map is used to represent the status of
free or used logic blocks (1 for used, 0 for free). The opera-
tion of the proposed allocation algorithm will be imple-
mented in the hardware. The one dimensional array case
will be addressed first. Then, implementation of one dimen-
sional array approach will be demonstrated. Figure 2 repre-
sent three basic allocation schemes. These are array
allocation, matrix allocation. These two algorithms can be
implemented in hardware. In the next subsection, we will
examine these algorithms.

Figure 2: Logic block allocation schemes

3.1 One cell or continues array of cells alloca-
tion

Because of the similarities between the memory and log-
ic blocks, memory allocation algorithms can be applied to
FPGAs. Among these algorithms, a binary buddy system is
feasible and fast because of its hardware applicability. Allo-
cation is done using hardware maintained binary tree. In
this algorithm, an array of connected cells (bit array) repre-
sents the status of cells such as 1 is occupied, 0 is free. This
bit-array forms the binary tree. Allocation can be done by
simply setting bits in the bit array, similarly deallocation
can be done by resetting the bits in the bit-array. Therefore
same logic can be applied to both allocation and dealloca-
tion schemes in the marking phase. This algorithm is imple-
mented in pure combinational logic.

Binary buddy system allocates cells in sizes of powers of
2. In order to allocate free logic blocks requested by the ap-
plication, allocation system must do three things: a) deter-
mine the availability of size in power of 2, if so, b) find the
beginning address of that free space, c) mark the corre-
sponded bits to complete allocation. Figure 3 illustrates
these three operations in bit-array form. In this example,

each bit represents the smallest blocks of cells that can be
allocated at any given time.

Figure 3: Example for allocation of 2 blocks.

 In this approach, the OR-gate tree determines whether
there are enough free cells of requested size to allocate.
Anding output of OR gates at the same level gives the avail-
ability of requested size of blocks. If one of the nodes in the
same level has zero value which shows the availability of
requested size, “and” results of this level will be zero. For
example, at level 2, each node, b and c, represent 22 cells
and anding b and c provides availability of free cells of this
size.   Figure 4a demonstrates free cell availability.

Figure 4: Cell allocation algorithm (a) OR-gate tree, (b)
AND-gate tree, (c) Propagated AND-gate tree

 Then to find first address of the free cell(s), OR-gate re-
sults of this level transfers to the AND-gate tree which pass-
es the availability of cell(s) at the required level upward
toward the root. Suppose the AND-gate tree determines the
address of the first zero at level l of the OR-gate tree. How-
ever, in the search of free cells, it can be returned to the par-
ent node to check the next leaf node, therefore AND-gate
tree needs a backtracking algorithm to calculate the exact
address of free cell(s). By propagating left child of each
AND-node to the parent node, this need is avoided and tar-
get address is formed via these propagated bits (Figure
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4b,c). But this address is a relative address which is the be-
ginning of 2level size cells. Therefore this address should be
multiplied with 2level or simple shifted to right with level.
Figure 4 demonstrates the finding address of first free cell
at the zero level.       

Figure 5: One bit free cell locator

In the Figure 5, one node slice cell locator is shown.
Combining the AND-gate tree and the OR-gate tree reduces
the design size and complexity and increases reuse. Size sig-
nal represents the level and allows the AND-gate tree to use
the OR-gate results of the same level. Figure 6 details the
complete implementation of an 8 cell locator. 

Figure 6: OR-AND-gate Tree 

When the logic blocks are located by the OR-gate tree
and the AND-gate tree, the number of bits requested for al-
location need to be marked as occupied. Thus we need an
algorithm which is feasible to implement in hardware to
mark the corresponded bits. Free cell locator provides the
starting address of these cells. What we need is to mark re-
quested size of logic blocks from starting address. Basic im-
plementation of marking bit array is described in Figure 7.
Size value is transferred into consequent bit array, then
shifted with starting address. This shifted bit array is “or”ed
with the actual bit array to mark allocated bits.

Figure 7: Marking free bits

Previous marking algorithm is very simple and easy to
implement. On the other hand, it is not efficient due to un-
deterministic design size. This approach takes more space
than available cell in configurable computing (Table 1).
Therefore much smaller version of marking algorithm is
needed. Considering OR-gate tree and AND-gate tree,
marking can be achieved through signal propagation. Mark-
ing signals will be directed by size and starting address in-
puts, so only corresponded bits will receive the marking
signal. Unlike the AND-gate tree, bit-marker propagates
signals from the root of the tree to the leaves.

Figure 8: A marking node

Here is our first attempt to design marking nodes on the
tree (Figure 8). This approach not only takes less space but
also reduces the complexity through bit-slice design meth-
odology (12). Initially we need the route signal which is set
to 1 by default. This signal travels from top of the tree to
down and routed starting address bits in the each level. For
example the highest bit, 0, of starting address (010)2 = 2
routes the signal to left child node 1. Node 2 receives no
route signal. Requesting size (10)2 = 2 tells that one of the
21 blocks will be allocated at level 1. In this case node 1 and
2 receive size signal, ‘1’ which indicates one of the subn-
odes will be marked. A node which receives the route signal
marks one of its subnodes. Starting address bits at this level
determines which nodes will receive mark signal. other
node will be received route signal in case of partial alloca-
tion in this subtree. In this example node 4 receives mark
signal and propagates it to the left and the right sub nodes
and so on. Once mark signal is activated to the one direc-
tion, route signal is routed to other direction. Figure 8 shows
the marking operations. The routing signals of the marking
nodes in the last row aren’t shown to make diagram simple
enough. Complete marking algorithm is shown in Figure
8b.

The advantage of using the buddy system is fast cell al-
location. This approach is using significantly more cells
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than other strategies at the cell locating stage. However the
final marking can mark the exact size. The modified buddy
system does not always yield better cell utilization. Due to
external fragmentation and blind spot, there would be cell
wastes among the allocated cells. 

Figure 1. Marking four bits in and 8-bit array

Implementation of the marking tree is based one one-bit
marking node. Management of the signal distribution
among the nodes is the most curial design challenge. This is
achieved through careful node and signal labelling. In each
nodes sending signals are labelled with the target node la-
bel. For example, node 1 sends signals to node 3 and 4, re-
spectively outgoing signals are labelled 3 and 4. Out
signals, mark and route consist of two bits, most significant
bit is for right node, least significant bit for left node. In sig-
nals are labelled with receiving node label, so node 1 re-
ceives mark signal [1] and route signal[1]. Labelling nodes
starting from 0 gives advantage to determine starting and
ending node number in each row. 

By using above formula, marking-tree is formed very ef-
ficiently. Next figure demonstrate the construction of mark-
ing-tree.

Figure 9: Generation of marking-tree

One locator design and behavioral and structural designs
of marking tree are formed to implement the cell allocation
algorithm on reconfigurable computing machine. Founda-
tion series 1.5i tools was used in the design process for tar-
get device, XC4000E. Table 1 shows the result of three

designs in terms of number of CLBs, delays and Line of
Code (LOC) of VHDL source codes. Hardware implemen-
tation of optimized buddy system demonstrates high-per-
formance for allocation of free cells.   

* Xilinx 4000E-1BG225 (400 CLBs, 10K max logic gates)

3.2 Matrix Algorithm

As noted above, the OR-gate tree and AND-gate tree are
used to locate and mark the available cells. In a two dimen-
sional case, the address is expressed as a pair of addresses
which consist of column and row information. To determine
the availability and the first address of the cells, two dimen-
sional matrix is arranged in one dimensional array. Once the
bits can be viewed as one dimensional, bit array approach is
easily applied. An one-dimensional address can be trans-
ferred back to a two dimensional address through formula:
(x div m) and (y div n) in a m x n matrix. Figure 10 shows
the representation of two-dimensional matrix in one dimen-
sional array.

Figure 10: Transformation of two dimensional matrix
to one dimensional array

 The only difference is the address of the OR-gate tree
and the AND-gate tree which is now two dimensional. A
partial OR-gate tree represents the status of a bit map of (n
x n) mesh. (column,row) shows the size of the submesh.
Column and row must be a power of two. Free submesh can
be easily found in the outputs of the OR-gate in Figure 12.
There are three different mesh structure in the scheme: hor-
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starting node number = 2level - 1
ending node number  = 2 * starting node number

FOR i IN 0 TO level-1 GENERATE

      FOR j IN 2**i - 1 TO 2*(2**i - 1) GENERATE

             bitalloc PORT MAP(in_flip => temp_flip(j),

                     in_route => temp_route(j),

                     s_addr => m_addr(level-1-i),

                     size => m_size(level-1-i),

                     o_route => temp_route(2*j+2 DOWNTO 2*j+1),

                     o_flip => temp_flip(2*j+2 DOWNTO 2*j+1)

                     );

       END GENERATE;

 END GENERATE;

Table 1: Locator and Marker implementation 
results on XC4000E*

Component LOC
Size 
(bits)

# of Logic 
Cell

Gate 
Count 

Max Net 
Delay(ns)

Max 
Delay(ns)

Locator
 (Structural)

160 16 28 (%07) 310 6.5 41.2

32 58 (%14) 654 7.5 56.5

64 118 (%29) 1336 14.1 83.1

128 244 (%61) 2715 24.6 155.7

Marking 
(Structural)

64 16 22 (%05) 264 5.8 22.5

32 46 (%11) 552 11.5 26.6

64 94 (%23) 1128 14.3 29.3

128 190 (%49) 2280 11.9 41.8

Marking
 (Behavioral)

30 16 88 (%22) 1301 13.6 34.6

32 194 (%48) 3136 22.9 44.1

64 417 (%104) 7238 -- --

128 -- -- -- --
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izontal rectangular, vertical rectangular, and overlapping of
these two rectangles. The address calculations of these tree
approaches are based on different base addresses.

Figure 11: Partial or-gate tree and 4 x 4 mesh structure.

The one-dimensional cell-marker is used to form a two
dimensional cell marking system. While each row is repre-
senting one dimensional array, we can use one dimensional
array marker per row for x axis. There is only one cell mark-
er for y axis. This y-axis cell marker enables the proper x-
axis markers which mark x number of cells from the starting
x address. The device can mark the exact number of cells
needed for the submesh through pure combinational logic.
Figure 12 demonstrates two dimensional cell marking ap-
proach.

Figure 12: A two dimensional cell-marker for allocation

4  Conclusion and Future Work

Although there have been several development in the
area of reconfigurable computing, the technology of the
FPGAs and CPLDs need to be improved to provide better
solutions for the wide-range of applications. Advances in
hardware technology will reduce the complexity of designs
by providing new features for synthesis tools. This paper
presented a simple hardware design to allocate logic blocks,
saving considerable time over the software approaches.
Hardware implemented resource allocation scheme pro-
vides fast logic block allocation. Operating Systems may
benefit from this approach to manage configurable comput-
ing devices as a part of their resources.

Furthermore, the hardware implemented allocation
scheme represented in this paper can make feasible hard-
ware implemented resource managers. These on-chip re-

source managers can reduce the configuration time and
provide fast configuration. It may also allow component
sharing among the applications without adding any com-
plexity to the system. It is worthwhile investigating re-
source managers for better performance as well as higher
configurability in future research.
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