
185

SOC Verification Software - Test Operating System
Robert Devins

IBM Corp. Microelectronics Div. M.S 862J, 1000 River St. Essex Junction, VT 05452
rdevins@us.ibm.com

Abstract -- The IBM Microelectronics World Wide
Design Center (WWDC) provides System-on-Chip
solutions to its customers. SOC's are typically built
from IBM and customer cores, often containing an
embedded processor. The SOC business is
competitiveand time-to-market pressures are
increasing. The chips are becoming more complex -
driving enhancements in system programming and
verification techniques, reusability, and simulation
environments.

This paper discusses techniques that the WWDC is
using in system verification software development. It
outlines a strategy of providing reusable test programs
for verification utilizing customer reusable low-level
device drivers and simulation speedup techniques that
enable effective system level verification and coverage.
The goal is to dramatically reduce system-on-chip
development time and cost, while improving overall
quality.

I. Introduction

System-on-Chip development requires a unique
perspective on verification and programming practices,
and opens the door to a new paradigm in the
approaches to be used. The explosion in SOC business
demands reduced time and manpower for each chip
project, and the increasing complexity of the chips must
be addressed with a comprehensive verification
environment. SOC's are not just hardware - the
software running in the chip, or software using the
chip, ultimately comprises the functionality of the
product. Indeed, high-function, generic SOC's are being
redefined in a multitude of products simply by
installing different software. A key element to meeting
SOC development objectives is reuse. Reuse not only
applies to hardware IP, but to verification programs,
crossing into diagnostics and system software.

The method that IBM's WWDC has chosen to meet
these objectives is a software program called the Test
Operating System (TOS)[1]. The primary goal of TOS
is to provide a platform for developing reusable system

test programs, performing scenario-based verification of
a complex system, and controlling the simulation
environment. TOS-based verification is capable of
emulating real-life usage of the SOC hardware by
exercising concurrent core functionality, as well as
determining that all components are connected
properly. Because TOS is a software program, it is
further capable of providing initial hardware bringup
diagnostics.

The software-based verification environment helps
bridge the gap between the silicon provider (generating
hardware) and the customers (generating software).
TOS source code is readily available to customers to aid
in generating the customer "value add" software,
especially in device drivers. Customers are very happy
to get source code as a starting point; the WWDC is
winning business because of this.

CPU
EPROCD

Memory
MEMTEST
MEMORYD

EMMTD
EMMTDD

DMA
DMAAPP
HSDMAD

EBC
EBCAPP
EBCD

MAL
MADMALAPP

MADMALD

EMAC
ENETAPP
ENETD

HDLC
HDLCAPP
HDLCD

B
R
G

UART
UARTAPP
UARTD

GPIO
GPIOAPP
GPIOD

OPB
TOS Kernel

PLB TOS Kernel

UIC
UICD

Chip
Exerciser

Figure 1: Hardware/Software Built Together

To maximize reuse, the TOS method enables
development of verification programs, called Test
Applications, and example device drivers called Low
Level Device Drivers, to be associated with each
hardware component. This allows system designers to
stitch together a verification environment at the same
time, and in the same manner as the hardware chip is
stitched. There exists a library of hardware IP (cores
and processors), and a corresponding library of
verification IP (apps and drivers). When a piece of IP is
chosen, it comes complete with verification software.
The TOS kernel enables plug-and-play inclusion of

186

code very easily so software integration is done in a
very short time, often ahead of hardware integration.

Apps and drivers are written to verify a core,
independently of a potential chip that the core may be
used in (similar to the way the reusable hardware IP is
designed) and are programmable, via parameters, to
enable flexibility. This is the essence of reuse.
Therefore, a method of linking apps and drivers in a
specific chip is required. In TOS, a top-level exerciser
program is used to bind together individual test
programs, and to assure co-operability of the programs
in a concurrent system environment.

One of the key elements of the TOS is its ability to
multitask test applications. This enables hardware
contention and concurrency exercising, which is vitally
important to real-life functional emulation.
Multitasking also serves to improve simulation
throughput. Parallel test execution allows many
testcases to be run in a single simulation run.

2. Software Structure

TOS is specifically designed for system level
verification. Such an environment poses certain
restrictions on a system, particularly the speed of
today's simulators are not conducive to complex
software execution. TOS contains the necessary
elements to meet its objectives, and is expandable to
future simulation and acceleration technologies as they
become available. The modular design and consistent
message-based interfaces enable easy addition of test
applications and low level device drivers into a system.
The design of the message interfaces allows multi-
tasking to occur between applications, thus allowing
hardware functional overlap and contention to occur,
while individual applications are not aware of such
overlap. Concurrent execution requires the kernel to
provide support for resource allocation such as a
memory allocation manager and mutual exclusions
(mutexes). All code is written in "C", except for a
special device driver which directly supports the
embedded processor, or a virtualization of a processor.
It is in this driver, and only this driver where assembly
language may be used. This modularity allows TOS to
support systems with different processors, systems with
no processors, and native workstation execution. The
TOS kernel provides a generalized, processor
independent interrupt callback mechanism, and a
consistent set of functions that allow chip and processor
specific initialization sequences.

NonCooperative vs Cooperative Execution

Not all testcases can be run concurrently with other
tasks. For example, a fundamental register test being
done on a common core, such as an interrupt controller,
can cause failures in dependent applications. Such a test
is considered "uncooperative". TOS executes tests in
two groups, with the uncooperative tests running
serially at the beginning of a run, followed by the
cooperative tests running in parallel. Some tests
designate themselves to the system as strictly
uncooperative, and in some cases, it is up to the system
verifier to select the appropriate classification of tests
for a specific chip implementation.

Multiple-Instantiation of Apps and Drivers
It is a requirement for reusability that code designed to
program and verify a hardware component be plug-and-
play. It is feasible (and practical) that more than one
copy of a core be accommodated by the system. Some
cores are multi-channel, and can run simultaneous
testcases on each channel, this also must be
accommodated. TOS has constructs that enable all apps
and drivers to be written so they can be used,
simultaneously, as many times as required in a design.

CoreCore CoreCore

Kernel:
Initialization
Scheduling
Configuration
Interrupt
Dispatch

User Interface And
Exercising Application

Test
Application

Test
Application

Device Driver Device Driver

Register Programming
Interface

Figure 2: TOS Software Structure

TOS is structured similar to many common operating
systems. All operation is controlled by a scheduling
kernel, which is responsible for dispatching and
managing the tasks. In this paper, the terms "tasks",
"test application" and "application" are used
interchangeably. The kernel contains the resource and
memory management functions, the processor
initialization and first level interrupt handling
functions. Chip specific code is included in the
"exercising" application program, designated as the
"master" task. The master task is by default always
scheduled to run, has decision control over what to run,
and when to run it. Specific chip initialization, testcase
selection and specific testcase setup is perform when
running the master task. Once selection and setup is

187

complete, test application tasks are scheduled in the
kernel via the message interface.

Hierarchically, chip specific knowledge is in the
exerciser, and core specific knowledge is in the device
drivers. Drivers know how to program the function of
the underlying core hardware, but perform no
verification algorithms, they are service routines for the
test applications. Test applications contain the specific
knowledge and algorithms to perform tests using the
services of the drivers, then verify the results. All test
applications are self-checking. The exerciser contains
functions for selecting meaningful application tests (for
the given chip), initializing and scheduling them in the
kernel.
All exercisers and test applications follow a similar
control flow. Each test application supports two chip-
specific functions that are linked into the system
exerciser: a starting_function and an ending_function.
The starting functions are used to initialize (obtain
resources, setup chip specific logic) and select testcases
that are available in the test application and are
appropriate to run in the system. Starting functions are
called from the master task whenever the application is
idle. Ending functions are used to free resources and are
called whenever the application has just completed a
test. Testcase results are logged by the ending functions.

Test applications are written to be multi-tasking. All
applications are invoked from a message. (Testcases are
messages to TOS test applications) If the application
has never been run, it is given the opportunity to
perform one-time initialization code, then it begins a
forever loop, where it waits for a message. Since the
initial invocation was a message, the application will
immediately wakeup and start processing. When done,
it will again wait for a message. An application is
considered idle if it has never been run or is currently
waiting for a message.

TOS is a non-preemptive operating system, all
applications must be good neighbors, and yield control
periodically. Since most testcases involve some sort of
hardware data transfer, applications will issue the
kernel YIELD directive after hardware is started,
during the wait for completion. Applications that are
yielding stay on the schedule and are continuously
called (and are said to be in a yield-loop).

The application remains in the yield-loop until a
countdown timeout or hardware completion is detected
(via an interrupt handler callback or hardware poll). At
that time, the application executes a results verification

algorithm, sets a success/fail return code and waits for
the next message.

Interrupts are handled asynchronously relative to
applications. Device drivers initially service hardware
interrupts, determine and remove the cause and issue
callbacks to appropriate applications to signal interrupt
events. An event handler, or callback function in an
application sets an internal flag which is monitored by
the yield-loop. When the flag is set, hardware is
determined to have completed it's operation.

Typical YIELD-LOOP Construction
timeout=APPLICATION_TIMEOUT_COUNT;
transfer_complete=0;
while(timeout-- && !transfer_complete)
{
 YIELD;
 Get_Instance_Context();
}

The flag "transfer_complete" is set asynchronously by
the application callback function. This is normally the
terminating condition of the loop. The YIELD
statement returns control to the kernel where other
applications are dispatched, which may include another
instance of the current application. When dispatched,
the application code returns from the YIELD. Since this
application may be running in multiple instances, the
proper instance context must be reestablished in all
cases of kernel dispatch.

4. Testbench Structure

Chip
Being
Tested

External
Messaging
Unit (EMU)

External Memory
Mapped Test
Device
(EMMTD)

External
Driver
Models

Memory Models
(SRAM, SDRAM)

Figure 3: Components of Testbench

System verification often involves external, or off-chip
data transfer or control. TOS environments consider the
off-chip platform as a TOS testbench. Testcases must
be able to send and receive data according to protocols
as a function of verifying chip IO connections and
system functionality. Typically, this is done using

188

external stimulus/expect models. Models come in many
varieties, from simple wrap-back connections to
complex vendor protocol drivers. Because TOS is a
software-based environment, it is necessary for code
inside the SOC to be able to control and monitor the
activities of external devices.

TOS software uses a memory-mapped external device
(EMMTD - external memory mapped test device) to
communicate with external behavioral devices.
EMMTD is simply a bi-directional general-purpose-IO
device containing banks of registers (currently 128, 8-
bit registers), connected to one of the SOC’s external
memory busses. Software reads and writes the registers,
which appear as wires to trigger or get responses from
an external model.

The testbench also typically includes a memory-mapped
write-only device for communicating (tracing) internal
software execution to a simulator or user console. The
EMU (external messaging unit) simply contains trace
decoding logic that converts register writes into human
readable display messages. This function has proved
very useful for realtime execution tracing and debug.
The EMU timestamps all trace entries so information
can be cross-referenced to a simulation waveform
display.

Core
Mirror
Core

System
Under
Test

Stim/Exp.Model

Bus
Functional
Protocol
Interpreter

Internal
Stim/Exp.
Memory

BFM

BFM

EMMTD
(GPIO)

Protocol Signals - Handshake Between TOS Testapp and S/E Model
Start: TOS program tells BFM Master Program to Initiate Transfer on Model Core
Direction: Transfer Data Direction, To or From, (BFM Master Program Interprets)
Done: BFM Master indicates TO Transfers are Complete (to TOS program)

Status: For TO Transfers, BFM mem_check Results

External
Interconnects
to Verify

FROM TO

Stim/Exp Data

Figure 4: Mirror Core Model Example

A simple method of developing a complex model is to
mirror the internal core on the testbench. The EMMTD
device serves the trigger/response handshake to the
mirror core subsystem. The mirror subsystem contains
simple handshake interpretation logic required to
program the mirror core under the direction of SOC test
software.

This example shows how the EMMTD is used to
control a mirror using four interface signals. After the
internal core is programmed by software, Start is

activated to trigger the mirror to configure its core to
either send or receive data (according to the Direction
signal). When configuration is complete, Done is
asserted by the mirror, and SOC code begins the
transfer. If data is going to the mirror, it is verified in
the mirror subsystem logic. Data going to the SOC is
verified in the TOS software. To determine the success
or failure of mirror verification, SOC software
interprets the Status signal.

EMMTD is used in a variety of ways, depending on the
needs of the test applications. Anything from single
wire triggers to complex busses may be implemented.

4. Simulation Execution Modes

TOS software is designed to seamlessly operate in a
variety of modes to accommodate the requirements of
simulation users. Event-driven simulators are not
conducive to running complex software programs
completely in the confines of the HDL simulator model.
Nor is software debug made easy in these environments.
Techniques are needed to improve the performance of
the system and its debuggability.

RTX - Simulator Independence
When simulating a design in one of the modes
described in this section, it must be noted that the TOS
software, the ISS and the simulator itself are run under
the control of an overseer program called RTX (run
time executive)[2]. RTX is responsible for providing a
simulator independent interface to allow TOS
verification to be seamlessly run on a multitude of
different kinds and brands of simulators. All
interprocess communication (IPC) is managed in the
IPC layer of the RTX control program.

CoreCore

Bus

Bus
Functional
Model Of
Any Bus

"TOS" Main() "Simulator" Main()

IPC

TOS:
Kernel
Exerciser
Test Apps
LLDD's

Runs in
ISS

RTX
Low
Level
Trans-
action
Interface

RTX
Low
Level
Trans-
action
Interface

RiscWatch Debugger

Figure 5: ISS/BFM Execution Mode

189

A common enabler for pre-silicon software developers
is the Instruction Set Simulator (ISS) model. The ISS is
a workstation-based C program that interprets and
executes specific processor instructions. ISS models
often come with an associated source code debugger
that allows single-step and breakpoint capability. When
coupled with a logic simulator, a co-simulation system
is formed. In this case, the embedded CPU model is
removed from the HDL simulation, and replaced by a
bus-functional model (BFM). The BFM is capable of
driving and monitoring the appropriate CPU bus
signals on behalf of the ISS.

The ISS method is used in IBM's WWDC department.
All TOS software is executed in a PowerPC(TM) ISS,
running in a workstation process. Bus transactions are
issued across the IPC to another process containing the
HDL simulator, where they are driven by the BFM. The
ISS process is stalled until the bus transaction is
completed. Users develop and debug TOS sofware in
this mode using the PowerPC-Based RISCWatch(TM)
source level debugger. This mode offers a reasonably
responsive simulation environment for testcase software
developers, but has a serious drawback: The SOC
model does not contain a true processor, and is not
executing any code. Verification regressions, or gate-
level regressions cannot be run on such a simplified
model.

To allow reasonable throughput for full-function
regression simulations, the split-domain execution
model was developed. Split domain is designed for
verification regression runs, it is not conducive to
software development.

CoreCore

Bus

TOS:
LLDD's
Run In
Processor

"TOS" Main() "Simulator"
Main()

IPC

TOS:
Kernel
Exerciser
Test Apps

Runs
Natively
In
Workstation

RTX
Sema-
phore
Transfer
Interface

RTX
Sema-
phore
Transfer
Interface

Figure 6: Split-Domain Execution Mode

In split domain mode, the TOS software is split into a
high-level domain containing the TOS kernel,
exercisers and test applications. The high-level domain
runs in a process separate from the simulation process.

All low-level device drivers reside in simulation
memory and are executed by the CPU-based simulation
model. This allows much (up to 80%) of software
overhead to be executed at workstation speeds, while
still executing real CPU cycles in the simulation model.
High-level code executes until a device driver is called
(unlike BFM mode where a bus cycle is required), and
control is transferred to the simulator to execute the
device driver function in CPU software.

TOS execution modes are transparent to software
developers; the differences are completely encapsulated
in the kernel API's.

5. Developers Tools

As the WWDC grows and takes on more business, it
will become necessary to make the TOS system
available to more internal user groups, contractors and
customers. To make the transition easier on both the
TOS users and TOS developers, a set of GUI-based
tools, called the Autotos project, has been developed.
The GUI will enable user access to all future
functionality of the system.

As is true with many software systems, an integrated
developers environment is available for TOS users. The
primary focus of the tool is ease of use, and
development efficiency. Autotos combines the use of
code generation wizards and software component
stitching with an integrated Graphical User Interface.
This allows users to refer to the GUI to do everything
from developing test application/driver code,
constructing a system and test scenarios to launching a
simulation run and monitoring results.

TIDE
GUI

Project Core Catalog

System Definition (SDF)
Application Definitions (ADFs)
Driver Definitions (DDFs)
switches.h

System Definition
Compiler

App Definition
Compiler

Driver Definition
Compiler

tasklist.h, drvlist.h, intmap.h,
memmap.h, sysmap.c,
sysmap.h, chipexer.h,
chipexer.c, emu_task_dec.inc
resmap.h, coreexer.h's

coreapp.c, coreapp.h
coreexer.c

cored.c, cored.h

TOS Compiler (build)

Figure 7: Autotos Architecture

Autotos is composed of three primary components
linked together by the GUI. Users will work within
specific projects, and select TOS components from a

190

common catalog (library). The system-definition section
enables system designers to selected from the catalog
and configure the system as required for the project.
Test scenarios and options are specified and simulation
sessions are launched. The application and driver
sections are used by test application and driver
developers to create or modify the TOS applications and
drivers. These tools are code generation wizards which
automatically create tailored TOS templates and allow
developers to focus on app/driver code rather than TOS
interface code. Code generation is not used only once to
create templates, it is iterative - tests and interfaces are
added, modified and deleted. The tools perform read-
modify-write operations on source code according to the
user directives.

The autotos GUI is expected to be run as a Web Based
application. This enables engineers working at
customer sites, teachers holding remote classes, or
contractors to gain access to the latest catalogs and tools
online. Subject to contractual and local law restrictions,
simulations and compilations can be performed
remotely, further enabling external or IBM field groups
access to the TOS technology.

6. Summary

The exploding System-On-Chip business coupled with
the need to reduce cycle time and produce high quality
complex devices has led to the need for a reusable
system verification methodology. SOC customers are
often software suppliers looking to bundle their "value
add" into IBM provided chips. The TOS methodology
helps bridge the gap between silicon suppliers and
software-based customers, by providing customers with
examples of working software, and by performing real-
life scenarios on designs prior to releasing them. As
more people use the methodology, tools must be
provided to assure efficiency and ease of use. IBM is
winning customers because the TOS verification system
and its related tools is an available technology.

Acknowledgments

The author gratefully acknowledges the contributions of
the IBM WWDC teams for the creation and use of this
methodology. In particular, Ken Mahler for advice and
implementation, Mark Kautzman for project
management, Bob Herzl, Jim Robinson, Dave Milton
and Joe Williams for advice and counsel.

References

[1] R. Devins "System On Chip Verification and
Programming". IBM MicroNews, vol 5, no 2, pp. 22-23,
April 1999.

[2] K. Mahler, "An Object-Oriented Simulator
Independent Environment for Logic Verification of
Systems on a Chip", DesignCon '99 February, 1999.

IBM, PowerPC and RISCWatch are registered trademarks of the
International Business Machines Corporation.

