
167

Data Modeling and Convergence Methodology in Integration
Ensemble

Lou Scheffer

Cadence, San Jose, CA, USA

Abstract

Integration Ensemble (IE) is a tool that enables teams of
designers to go from RTL to GDSII. This paper discusses
the choices behind the data model for such a tool, and the
use models, methodologies, and features required for
design convergence.

Introduction

We start with a quick explanation of what Integration
Ensemble is and why it was built. Next, we describe a
thought experiment that shows why advanced handling of
hierarchy is required. Then we discuss how the use of
hierarchy drives the data model. We discuss the use
models and how they contribute to design convergence,
and the new features needed to support this. Finally, we
draw some conclusions about how flow tools differ from
point tools.

What is IE, anyway?

Integration Ensemble (IE) is an integrated single tool that
works helps the designer transform RTL to GDSII. It has
three main goals:
§ Make flows easier by building a single integrated
product that can replace the collection of existing
Cadence tools now required.
§ Provide new features to make hierarchical design
flows easier and more productive.
§ Provide the tool for the digital part of the mixed signal
flows.

Historically, customers used different tools for each step
in the design process from RTL to GDSII. For example,
they might use a floorplanner, a synthesis tool, a placer, a
router, and a timing verifier. The tools were developed
and sold this way (even if all the tools were from the
same vendor), and the customers often preferred different
tools for reasons of price, performance, or features (the
‘best in class’ approach).

The very existence of this conference shows the problem
with this approach. Designers needed to learn several
different tools. Subtle incompatibilities (particularly in
timing) hurt design convergence. Users had to cope with
multiple libraries and design translations.

IE was built with the goal of optimizing the flow as seen
by the designer. This drove a number of technical
decisions. First, we used a single, very high capacity
database (Genesis) for all tasks (floorplanning, synthesis,
timing, placement, routing, and signal integrity). This
already shows a flow bias since such a combined
database can always be outperformed by a task specific
one. Second, we modified each task to use a common
timing engine. Once again, this did not help the
individual tools, but made the flow work much better.
Finally, we replaced 6 different tool user interfaces with a
single cockpit/GUI from RTL through place & route.
This was a huge step in terms of making the flows easier.
Finally, since the flow context of each tool is better
known, each tool became simpler. The entire flow from
RTL to GDSII now has less than half the menu options of
the old floorplanner alone!

In contrast to previous Cadence products, the emphasis in
IE is not on point tool features; we just tried to
incorporate the best technology from tools such as PKS,
Qplace, Wroute, IC Craftsman, CT-GEN, and the block
placer. The new features that were added are there to
help flows, not because they improve point tool
operation. In particular, hierarchical flows have always
been particularly difficult, and the new features and
options were added to make this easier. This required a
much-increased emphasis on constraints and budgets.

Although IE already handles many more steps in the
design flow than its predecessors, it by no means handles
them all. Additional flow steps may include:
§ Inclusion of custom digital, datapath, analog and
mixed signal blocks, and MEMs.
§ Design specific techniques for test insertion and design
for test.
§ Functional verification.
§ Chip finishing (adding alignment keys, scribe grid,
tests structures, and other manufacturing necessities)
§ Physical verification
§ Manufacturing signoff, including PSM and OPC

In some of these cases, such as MEMs, IE will probably
never handle the problem directly, but will be used as a
sub-system to design the digital portion of the chip. In

168

other cases such as chip finishing, IE will be extended to
handle these flow steps.

Data Model

The big question is whether the data model is flat or
hierarchical. Contrary to popular belief, hierarchical is
NOT essential for CPU and/or memory reasons. Most
CAD algorithms already scale as O(NlogN) or better, and
since the machines available scale with problem size, we
will probably always be able to do a design flat if we
really want to. Furthermore, hierarchy induces an
enormous number of complications. Never the less, we
decided to do it anyway. To show why we’ll imagine a
thought experiment.

A Thought Experiment

Suppose you are a startup with the following
requirements

• 250K lines of code to write
• 8 months to do it in, and get it right

Suppose you have a perfect flat tool for synthesis, place
and route, that gives optimum results in zero run time.
How do you organize your chip construction effort?

A normal coder generates about 6 lines per day of fully
debugged code. As a startup, you hire only wizards who
can write/debug 60 lines per day, by being exceptionally
intense and working 16 hours per day. Now assume the
whole team works 7 days per week for 8 months. In this
time they can write and debug about 15,000 lines of code
each. Therefore you need about 16 developers.

This is too many to manage as a single group, and there
are too many people for each to know what everyone else
is doing. The most natural organization is to divide into
teams. But each team needs to know of other team’s
plans since some (important) things depend on whole
chip organization - things such as power budgets, delays
in long wires, signal integrity, and so on. Furthermore,
the hypothetical synthesis/placement/routing tool,
although perfect, still needs legal input, so each team will
need a ‘known good’ version that the other teams can use
while they build a better version of their own portion.
Finally, the other teams will need to know how to interact
with at least some of a given team’s work. They will
want this portion to be well defined and stable. This
leads to the definition of interfaces and budgets. Finally,
the flat tool will make it hard for each group to keep track
of their own progress. Very soon, each group will define
their portion of the chip, with interfaces, so they control
their own progress. They have re-invented hierarchical
design! This conclusion holds even if the designers have
a perfect flat tool available.

We therefore conclude that hierarchy is neither for the
benefit of the tools, nor because of their limitations.
Hierarchy is for the benefit of the humans, not the
machines.

Use Models for Hierarchical Design

From the previous section, it’s easy to see that designers
will need to use hierarchy. However, hierarchy can be
used in many different ways. Two main variations are in
the type of hierarchy that is used and the order in which
tasks are done.

We decided we needed to support three types of
hierarchy. The first is flat, or no hierarchy at all. This is
needed for two reasons. First, for simple designs it is by
far the simplest flow. Users would prefer not to face the
complexities of hierarchy unless the design requires it.
Second, flat design is needed to build the blocks even in a
hierarchical environment.

The next hierarchy style is a pure block design. Here
every piece of logic is assigned to one of the blocks. The
blocks can then be designed independently. This is most
useful on very large projects or those that have
geographically dispersed groups.

Finally we have a mixed hierarchy. Here the vast
majority of gates are assigned to one of the blocks, except
for a small percentage that cannot easily be assigned to
any block (this small percentage of gates may still
number in the thousands, though – too much for any
manual operations.) The user wants these gates sprinkled
among the blocks at the top level.

On top of these three main hierarchy types, there are two
task orderings that must be accommodated. In ‘top
down’ design, the overall chip design sets the budgets for
the blocks. These blocks are then built to meet the
imposed budgets and then used to complete the chip. In
the ‘bottom up’ flow, the blocks are built first. These
completed blocks are then assembled into a chip. The
chip design here must accommodate the block
specifications.

Both top down and bottom up are needed in different
circumstances. Top down is needed when the desire is to
split a design problem across multiple groups,
particularly where the groups are dispersed. Bottom up is
need for IP blocks, since the blocks are completely
designed ahead of time, and the global chip layout and
interconnects must accommodate the already designed
blocks.

169

Data Models for Hierarchical Design

The data models are defined by the need to handle the
hierarchical design styles defined above, both bottom up
and top down. Here are some of the problems faced by
the users, and how the use of hierarchy impacts the data
models needed:
§ Timing. The data model must support timing
constraints that span block boundaries, and allow
budgeting of global delays onto individual blocks. There
must be an easy way for the user to specify the expected
characteristics of blocks that are not yet built.
§ Parasitics. In a hierarchical design, once a block is built
in isolation it must be incorporated into the chip. Signals
entirely contained within a block can be reduced from
parasitics to delays. Signals that connect to the pins of
the block must be kept as detailed parasitics, since the
rest of the net is not yet known and most reduction
algorithms require the whole net before processing.
Therefore, the data model must support a mixture of
reduced nets and fully detailed nets.
§ Over the cell routing. If a global signal is routed over a
block, perhaps with buffer insertion, then the block
designer must accommodate the needs of the overall chip
architect. These requirements can be treated as requests
or commands, depending on the importance of the signal
at the top level. Clearly the block designer must allow
for the resources used for top level routing, and there is
the possibility of interference between the over the block
routing and signals inside the block. For all these
reasons, the data model must distinguish routes assigned
from above and routes with the control of the block.
§ IR drop. The IR drop allowed for a block is only a
fraction of that allowed for the whole chip. If a block is
built for incorporation into the top level, a simplified
model of the power supply network for the block must be
available to the top level.
§ Antenna rules. Depending on which is done first, the
block or he global interconnect, the second task has limits
on how much of each metal layer can be attached to the
pin, and perhaps on which cells and drivers are allowed.
§ Power routing. The power structure (grids, rings, and/or
stripes) is usually defined for the chip as a whole. Since
this is very hard to change near the end of the design
cycle, it’s best to get it right early, before the detailed
block design. So the individual blocks must be able to
inherit the power supply structure from the overall chip
design.
§ Multiple power supplies. Modern chips, particularly
those that are power sensitive, typically contain many
different power supplies, of the same or different
voltages. This has many implications for the data model,
particularly for timing, signal integrity, and output of the
completed netlist.

Convergence Methodology

Better design convergence is one of the main reasons for
an integrated tool, so we attack it on a number of fronts.
The principles are very simple:
§ Do the hard parts first
§ Do it right, not do it over
§ Prevent AND fix
§ Suppress unneeded detail

Specifying the tool to work best with three particular
hierarchical design styles makes this task much easier.

Do the Hard Part First

What is the hard part? Of course, you can always find
the hard part simply by trying the design and seeing
where you have the most trouble. An expert who has
done a similar job already can really help you here,
though.

The ‘hard part’ will vary from design to design, and so
does the features needed to attack it. For example, in
many chips the most difficult part is the global wiring.
In this case the NANO flow [1] should be used, which
does the global routing first. The pin positions on the
blocks should be chosen to make the global routing
easier, not to ease the block design problem.

Another possibility is that the ‘hard part’ is the design of
a particular block. In this case we should do the hard
block first, and let it set its own pin locations to where it
thinks is best. Therefore a ‘bottom up’ flow is best, at
least for the troublesome block. Furthermore, if the block
is difficult, changes to the RTL may be required to enable
it to be implemented at all. In this case, we strongly
desire a tool that gives the RTL designer instant feedback
about the physical effect of their decisions without
waiting for a place and route cycle by another group.
This drives the RTL designer to use a tool such as PKS as
an accurate feasibility estimator, even if the exact results
will not be used in the final design of the chip

A third possibility is that the ‘hard part’ is meeting a size,
cost, or power target. These are properties of the whole
chip, not just one block or wiring section. The best way
to converge here is to start early with estimates for all
blocks and update often as blocks progress. In this case it
is crucial to run the real tool as early as possible, to make
sure the estimates are reasonable. These tools include the
detail router, synthesis, clock tree generation, and any
other tool that can affect the desired global properties.

170

Do it right, not do it over

The worst convergence problems occur when the RTL
seems OK but cannot be implemented with the desired
performance. After many futile attempts at
implementation, the task needs to go back to the RTL
designer along with some hints as to why it was
infeasible.

The best way to avoid this is to allow the RTL designer to
see the implications of what they write. This means they
should have access to a physically knowledgeable
synthesis tool as they design. This allows them to check,
as they go, whether their design is OK. Although it may
sometimes be unneeded, it provides a lot more
confidence.

Suppress Unneeded Detail

Chip design in general, and hierarchical design in
particular, have an enormous amount of detail only a tiny
fraction of which is useful to a designer at any given
time. Two examples of this are global wiring budgets
and consideration of DSM effects. Someone needs to
worry about these problems, but if that person is the RTL
designer the chip will never be completed. It is crucial
that all these details be handled automatically wherever
possible.

Every designer-entered budget number can make an
otherwise easy design infeasible, so we need a budgeting
and allocation strategy for all problems. Historically, this
has been the biggest barrier to hierarchical design. A
multi-million gate design may have tens of thousands of
top level nets and pins. Each of these nets and pins need
constraints if the block design is to be farmed out to
separate teams, and a single bad number can make the
block and/or top level design impossible.

The new features in IE are concentrated in this area. The
NANO methodology provides one particular way to
account for global wiring delays in the budgets.
Shell/Core partitioning provides a way to tradeoff the
budgets of the blocks against each other to arrive at a
mutually acceptable compromise.

Although DSM effects are crucial, we cannot expect that
RTL designers, for example, will be experts in
inductance, or crosstalk, or antenna effects, (In fact, 90
percent of the people involved in the flow have no idea of
what an ‘antenna effect’ is, other than that it is some ugly
DSM problem that needs to be fixed.). These effects
must be fixed as automatically as possible, and the
portions of the effects that are of interest to RTL
designers (such as timing degradation) must be
incorporated in an easily understood manner.

Prevent AND Fix

Correct by Construction is great, but not always practical.
For example, crosstalk control can be done in correct by
construction[2], but these techniques that using nothing
but prevention have a huge overhead.

On the other hand, Construct by Correction can yield
unpleasant surprises. For example, widening a power
line after final place and route is really painful, since
many existing signal wires will need to be relocated, with
probable timing, signal integrity, and routability impacts.

We need a strategy for each chip problem, with the
appropriate features for fixing it. A sample of some
problems and where they should be addressed in the
design cycle for maximum productivity:
§ Supply planning must be done very early, since it is
very difficult to make the wires bigger later.
§ Crosstalk glitch control can be left to post-routing. In
general, circuits on the critical path have strong drivers
and short routes as a consequence of timing driven sizing,
placement, and routing. Most crosstalk glitches happen
on side paths, and can be fixed after routing.
§ Crosstalk delay must be anticipated during synthesis,
since the router can only reduce, not eliminate, the effect.
§ Antenna problems should be avoided by global
buffering but also must also be fixed during detailed
route.

A quick look at this list shows one of the main
advantages of an integrated tool – a given user could
discover by experience the best strategy for each
problem, but a pre-built flow thinks about these problems
in advance and makes it unnecessary to learn from
experience.

Conclusions

The main conclusions are: hierarchy is needed for the
humans, not for the algorithms. The need for hierarchical
design (and the hierarchical design styles supported)
determines the data models needed. Design convergence
in flows requires both well-specified use models and
explicit consideration in tool design.

References
[1] “NANO Project would reroute today's synthesis-to-

layout flow – Cadence maps design overhaul",
Electronic Engineering Times, May 17, 1999

[2] S. P. Khatri, A. Mehrotra, R. K. Brayton, A.
Sangiovanni-Vincentelli, and R.H.J.M. Otten, "A
Novel VLSI Layout Fabric for Deep Submicron
Applications," Proc. DAC, 1999, pp. 491-496.

