
A METRICS System for Design Process Optimization

Andrew B. Kahng
UCSD CSE and ECE Depts

La Jolla, CA, USA
abk@ucsd.edu

Stefanus Mantik
UCLA CS Dept.

Los Angeles, CA, USA
stefanus@cs.ucla.edu

Abstract

With shorter design cycles and time-to-market
windows, it is essential for designers to have tools
and environments that can help them to design
more effectively and efficiently. While some
design time may be wasted due to incorrect use of
resources, other time may be wasted due to
inefficient design process. Our work addresses the
fundamental issues of understanding, diagnosing,
optimizing, and predicting the system design
process. Work in [1] described a prototype system
called METRICS that allows automatic recording
of design process information (see Figure 1 for
METRICS architecture). METRICS comprises a
web-based architecture based on industry-standard
components (HTTP, RDBMS, XML, Java servlet,
etc.) and standardized tool metrics (naming and
semantics); its purpose is to enable automatic and
fair comparisons of both design instances and
design optimization results. METRICS (i)
unobtrusively gathers characteristics of design
artifacts, design process, and communications
during the system development effort, and (ii)

analyzes and compares that data to analogous data
from prior efforts. Specifically, the infrastructure
consists of (i) a standard metrics schema, along
with metrics transmittal capabilities embedded
directly into EDA tools or into wrappers around
tools; (ii) a metrics data warehouse and metrics
reports; and (iii) data mining and visualization
capabilities for project prediction, tracking, and
diagnosis.

In [2], we extended the METRICS system to
allow optimization of design processes at the flow
level, rather than only at the individual tool level.
The updated infrastructure includes collection of
design flow information for use in flow
optimization, as well as integration with
datamining tools to allow automatic generation of
design and flow quality-of-result (QOR)
predictors.

This presentation describes the implementation
and deployment of a METRICS system at UCLA

Inter/Intra-net

DB

Metrics Data Warehouse

Web
Server

Java
Applets

Data
Mining

Reporting

Transmitter Transmitter
wrapper

Tool Tool Tool

Transmitter
API

XML

Figure 1. METRICS Architecture.

and in several industries networks, which we have
used to collect tools information (e.g., from
Silicon Ensemble regression tests). With the
Cubist datamining tool, we have constructed
predictors of various aspects of solution quality
for the QPlace, CTGen and Warp Route tools. In
other efforts, METRICS has been extended to
capture more tools and design flows including
SPW, SP&R, and Verification. The current
METRICS system uses thin Java wrappers around
tools for capturing design informations. The
METRICS server is implemented using a three-
layer architecture that consists of (1) a web server
and Java servlets as the top layer for accepting
report requests and design information, (2) Java
beans as the middle layer that is used for
processing both the reporting and the transmitting
of design data, and (3) an Oracle database as the
bottom layer for storing all collected design
metrics. Experiences obtained from this
deployment of the METRICS system include such
issues as the following.

Tool communications are always a big issue that
must be handled when integrating several tools
together. When writing tool wrappers, we will
always face problems because each tool is
developed differently than the other tools: there is
no common way for either passing controls to the
tools or retrieving information from the tools. For
example, some tools use configuration files to set
the run options while others require use of a
scripting language for the same purpose.
Similarly, design information can be collected
from a single log file for some tools while for
others, the analogous information is spread around
several different log files and report files.

Security of design data may be another issue.
For example, if the METRICS system is deployed
inside an Application Service Provider (ASP) site,
on which several different customers are using the
ASP's services for designing their products,
security is paramount for any metrics collected
inside the ASP. When transferring data from the
tools to the database, the data must have
appropriate levels of encryption and other
safeguards.

Effects of wrappers on wrapped tools is another
important issue. Overhead of wrappers should be
as small as possible. In addition, the robustness of
the tools should not depend on the robustness of
the wrapper, i.e., if a wrapper fails, the tool that it
wraps should run normally. Furthermore, in the
event of a network problem that prevents the
transmission of data to the METRICS server, the
wrapper must be able to store metrics data locally
without halting the execution of the tool.

Integration of the METRICS system with
license managers is important not only because
this is an easy path to useful data (e.g., by tracking
license activity we can obtain some indication of
when we need to add licenses to the CAD
resource), but also because METRICS needs to be
integrated with other process and resource
management tools such as Platform Computing's
Load Sharing Facility (LSF).

Finally, the METRICS system must also be able
to report bugs or other problems/exceptions
that occur when running the tools. Tools
designers can benefit from METRICS reports that
identify runtime configurations that produce
errors. Semi-automated diagnosis of tool “sweet
spots” (field-of-use, and proper configuration) is
also possible, e.g., recent experiments with
running variant PKS flows allowed us to assess
the utility of wire load models (WLMs) for timing
optimizations.

Reference:

[1] S. Fenstermaker, D. George, A. B. Kahng, S.
Mantik and B. Thielges, “METRICS: A
System Architecture for Design Process
Optimization”, Proc. ACM/IEEE Design
Automation Conf., June 2000, pp. 705-710.

[2] A. B. Kahng and S. Mantik, “A System for
Automatic Recording and Prediction of
Design Quality Metrics'”, Proc. Intl.
Symposium on Quality in Electronic Design,
March 2001.

