
17

The UEDK: A VLSI CAD/EDA Learning-by-example Platform
José Augusto Domingues Fernandes Lima

jal@di.uminho.pt

Universidade do Minho,
Departamento de Informática, Braga, Portugal

Abstract

The UMLe-UEDK (Utilization Environment
Development Kit) has evolved - as a natural
outgrowth - of the UMLe-SDK (Universidade do
Minho layout Learning Environment Software
Development Kit)[1]. The UEDK is aimed at
improving and extending UMLe usefulness as an
introductory CAD/EDA apprenticeship "tool".
By allowing students, as well as teachers, to
learn from utilization as much as from SDK
based development, the UEDK facilitates a
reflection, over CAD/EDA design features.
Indeed, given that Time to Market is critical for
product success, and given that the industry
faces an increasing demand for chip and tool
design engineers, it is useful that interested
students may be able to accelerate their learning
curve in the CAD/EDA field. Though being a
modest contribution, the UMLe-UEDK seeks to
help shorten the learning curve gap, facilitating
the learning efforts of prospective CAD/EDA
engineers.

1 Introduction

The UMLe has been developed as an OPEN
environment VLSI CAD/EDA platform, aiming
at providing basic data-structures, methods and
graphical user interface (GUI), needed to support
"independent" development of operations by
differentiated groups of students or researchers.
These services are supported in the form of
COM based DLL automation, compatible with
applications supported under Borland, Microsoft,
Rational, etc.
UMLe, hence UEDK, aims to facilitate an
evolving - and as much as possible seamless -
participation of different contributors. Allowing
developers to concentrate upon the development
of their specific CAD/EDA operation features.
The current environment - the UMLe SDK - has
evolved from the UMLe-Alpha - first presented
at IEEE/EDP99 [1]. The Alpha solution has a
DLL automation data-structure backbone,
enhanced with other .dll and ActiveX controls.
All such UMLe resources can be used by any
student built .exe CAD/EDA operation. The

UMLe-SDK platform uses a Data Structure
Server (DSS) together with an extensibility
environment (xEnv) and an extensibility object
library (xObj). All of these are shared by the
Add-ins implementing each CAD/EDA
operation. In fact registered Add-ins act as
environment additional tools, appearing to the
CAD/EDA user as if native to the environment.
Given the above, and since a reasonable number
of UMLe CAD/EDA operations have already
been implemented, the next step was to make
these CAD/EDA operations available to users.
This goal has been achieved by creating the
UMLe-UEDK platform.
The objective is for the UEDK - as well as the
supported UMLe Add-in paradigm - to constitute
a useful tool development environment, aimed at
furthering CAD/EDA apprenticeship at the
Department of Computer Science and
Engineering (Departamento de Informática).
Ultimately, it is our expectation, similar
objectives embodied in the utilization of the
UEDK platform, could be of interest to other
teaching and R&D communities.
A distinctive feature of the UEDK platform,
versus its UMLe-Alpha predecessor, is the fact
that it provides the “user” with Visual Basic
Add-in source code examples, from available
operations. The inclusion of these examples is
intended to provide a faster lane for a quick
UMLe-SDK development. Helping developers to
focus themselves upon the design of the
algorithm, and aspects like, adequacy of
available user design options, friendliness of the
GUI, quality of the solutions, etc., while
abbreviating the programming language and
UMLe-SDK programming features learning
curve.

2 The UMLe-Alpha: A first approach

The UMLe-Alpha. was the first integrated
release of the UMLe where a number of student
developed CAD/EDA operations were made
available. A UMLe Alpha project was a basic
hierarchical layout comprising a .UMLe file and
the corresponding .UML layout files. All
operations were implemented as executable files,



18

and shared the use of a data structure,
implemented as a DLL automation. Moreover,
access to several .ocx, providing project support
and integration (layout visualization, project
structure, etc) was also provided.
The operations available in the UMLe-Alpha
platform were of three major groups. Wizards
allowing users to build layouts - RAM cells,
Manchester adders, etc - editors/viewers
providing their own simple GUI, like a Stick
Diagram Editor, a FSM editor, and basic
CAD/EDA operations implementing algorithms
like Yoshimura and Khu channel router, or a
layout evaluation operation, etc.

Figure 1: The development architecture of the
UMLe-Alpha platform

3 The UMLe-SDK

As the result of the experience gathered in the
utilization and support of UMLe-Alpha we
concluded a tighter level of integration was
advisable. For instance, students often did not
comply with expected development practices,
e.g. introducing format mismatches or “quick-
fixes” into their .exe operations. Hence, the
UMLe-SDK was created in order to avoid such
inconsistencies, and provide a tighter and

extended development integration of CAD/EDA
operations. This SDK includes a development
environment "designed around" the UMLe
editor, such that user added operations can be
made available as if originally built-in into the
editor. Namely, the UMLe-SDK encompasses
the following elements:
Ø A MS like Help, where SDK features and

basic development documentation is
provided.

Ø A Data Structure Server (DSS), now
available as a server extensibility
environment (xEnviroment).

Ø An Extensibility Object Library, where
extensibility is the capacity to stretch the
functionality of the UMLe editor, seamlessly
adding operations previously unavailable.

Ø Unlike in UMLe-Alpha, operations are
implemented as Add-ins, though .exe
implementations (out-of-process) are still
supported. In fact, an Add-in is a program
which performs tasks within the UMLe
development environment, and it is
compiled as an in-process ActiveX .dll
component.

Ø A layout editing capability was added in
order to facilitate the support for certain
student developed operations, like layout
wizards. Also, an Add-in operation is made
available in the environment by being added
as a command button. Either as a tool button
in the editor's menu bar, or as a menu entry
in the Add-ins own menu.

Finally, and in order to help the appropriate
development of Add-ins, some templates are
available. They are the UMLe-Add-in template,
and the UMLe template wizard. The latter makes
available within the File-New menu a template
for layouts of the type created by a specific
operation, like the BDD-wizard, or the FPGA-
wizard.
To provide an overall presentation of the project,
as well as facilitate the access of students web
sites and a CD-ROM have been created.
Ø In http://gioconda.di.uminho.pt/UMLe, the

UMLe project is presented, access to
downloads of SDK versions, as well as on-
line documentation, etc, is provided.

Ø In http://gioconda.di.uminho.pt/UMLeSpecs,
the most current descriptions of the
specifications of each UMLe-UEDK
operation are available. Also, support and
content for operational aspects related to
courses whose small projects are within the
UMLe environment, is available at this site.

UMLe
Operations

(User
applications
available via
the UMLe-

Alpha
interface)

Data
Server

User’s
Operation

.DLL

UMLe
.OCXs

User’s
.OCX

User’s
.EXE



19

Ø The CD-ROM bundles, an SDK version, as
well as documentation and layout samples to
be used for testing.

Figure 2: Current UMLe Extensibility Model
development platform

Currently the DSS server implements mostly
basic data structures needed for layout
operations. Namely - and besides other features -
it implements the UMLe, and its Add-ins data
storage needs, as shown in Figure 3.

Figure 3: UMLe Data Storage structure, (items
currently under development shown shaded).

4 UMLe challenges: the UEDK platform

Two major objectives have been envisioned
when the UMLe idea was first proposed. One is
to provide students, researchers, with an
introductory hands-on approach to learn about
CAD/EDA design. The other is to provide a
platform where the work resulting from different
school years becomes visible, and available, to
next year students. Hence taking student’s work
out of the usual anonymity of course work
school projects.
It was also expected that, by providing access
and usage, of operations implemented by other
students, some healthy awareness - even
criticism - of good, and not so good, design
options could naturally result. Namely, given
that most of the specs of the CAD/EDA
operations remain the same across consecutive
school years. This self-teaching capability of
good, but less than perfect, design solutions
provides a learning opportunity based upon the
analysis of other student's - if not your own -
solutions' short comes.
Given the above objectives, one concludes that
in order to be more useful to students, the UMLe
project should encompass three complementary
aspects. Namely, the technical – in order to
improve the knowledge about CAD/EDA
algorithms, metrics, cost functions, man machine
interface, etc; the pedagogical – in order to
provide an effective way of improving the
quality of the design solutions - and the
cooperative – in order to permit a good level of
integration between features and operations
developed independently.
Following the more development oriented
UMLe-SDK, and in order to achieve the above
objectives the natural evolution was the creation
of the UMLe-UEDK. A more user oriented
platform, intended to enhance the results, as well
as resolve the pedagogical and cooperative short
comes proper to an SDK.

5 Evaluation and Early Analysis

The different development phases of the UMLe
platform have allowed us to learn how the
different architectures and the addition of
features have impacted upon the student's
learning curve as well as the quality of the
CAD/EDA operations implemented. In any of
the phases some very good operations were
developed. Nonetheless, the UMLe-Alpha
required less of an effort from the students in
terms of grasping the features of the environment

CAD/EDA user

xEnvironment

eXtensibility
Environment

Data
Structure

Server

User
developed

Environments
Operations

Add-in
Environment,
(independent
architecture)

In-process
Add-in

Out-process
Add-in

Internal
Formats:
.UMLe
.UML
.RUL
.LAY
.XTR

External
Formats
.CIF
.MAG
.TDB

TranslatorsDOM

Schema/DTD

XML

Data
Structure

Server



20

as well in terms of knowledge in VB. It
permitted a quick-fix development approach, but
was more dependent upon self-compliance of I/O
formats, as well as the capability of constructing
your own GUI. Alternatively, the UMLe-SDK is
a much more elaborate environment, with many
more features. Hence, it requires a more in-depth
knowledge of the architecture of the DSS, of the
xEnvironment and ultimately of the VB.
Conversely it enforces strict compliance and
compatibility of any operation with existing
formats, UMLe built-in methods and classes..
Consequently the learning curve tends to be
longer than before but problem free integration is
much more likely.
Currently, the UEDK is designed to facilitate the
UMLe-SDK environment and VB learning curve
by providing standard examples, as well as
allowing further development and enhancement
of existing UMLe operations. This allows
developers to concentrate upon algorithm
efficiency and CAD/EDA operational, and
design flow aspects, instead as much upon code
construction.

6 UEDK Evolution

The current UEDK is supported by the UMLe-
SDK, hence it is based upon COM and DLL
automation Microsoft technologies. Nonetheless,
work for Linux based platforms, namely the
UMLe-Anneal and the UMLe-Corba client-
server operations has been developed.
Ø The UMLe-Anneal engine allows students

to submit over the web partition data, in
order to obtain a TWPP solution.
Alternatively you may instead submit your
partition problem data to SAGA (the UMLe-
Anneal meta-engine). SAGA runs a Genetic
Algorithm (GA) engine which returns to the
user good Simulated Annealing (SA)
parameters for his/her own resolution of the
TWPP problem.

Ø UMLe-Corba has been intended as a
feasibility study for the evolution of the
UMLe DSS into specialized data servers
(possibly multi-platform). A development of
this solution is intended to replace the
current desktop based UEDK. The objective
is to provide more computing power,
increased flexibility and a distributed
management of UMLe-DSS data-structure
operations.

Also, current .UML, .XTR, etc. formats will
adopt a DTD specified and XML based
description, as illustrated` in Figure 3.

7 Future Work

In spite of evolution UMLe has undergone, there
is nonetheless room for UMLe platform
improvement. Indeed, in order to achieve a
higher emphasis upon design flow, and
CAD/EDA design methodology apprenticeship,
some relevant changes should be introduced.
Namely, and in order to make the platform more
flexible, and illustrative of current design trends,
Add-ins should run on remote machines, having
ActiveX controls implementing their client
browser interfaces. Indeed, in spite of the current
MS based solution, Linux based important
UMLe operations have been developed. Hence,
the next step would be to evolve the UEDK into
a web based, client server, CAD/EDA learning
platform. This approach, allows implementation
flexibility, while simultaneously providing
UMLe users with a learning ground for a
distributed, web based, CAD/EDA design flow.
(please refer to Figure 4). Moreover, such a web-
UEDK platform would provide users anywhere
access to a learn-by-example CAD/EDA
environment. Consequently, an expected
emphasis of the UEDK platform evolution is the
exploration of web based design flows and man-
machine CAD/EDA web design interfacing.

Figure 4: A web based UMLe architecture

Acknowledgments

The above work has had the participation of
many students, researchers and teaching
assistants. Namely, we would like to thank for

Data
Server

Operation
Specific
Server(s)

HTTP/
Application

Server

Client Browser with pre-installed
UMLe Components



21

their diverse roles into the development of
UMLe and UEDK: Vítor Serafim Pereira, Jorge
Duarte Braga, Dario Teixeira, Vitor Pereira,
Ph.D. and Sérgio Araújo.
Finally, some of this work has only been
possible thanks to a grant under project No

1668/95 of PRAXIS/JNICT.

References

[1] Lima, José Augusto, “The UMLe: A VLSI
CAD/EDA Learning Environment”,
IEEE/EDP DATC 1999, Monterey, CA,
USA.

Figure 5: View of the UMLe-Alpha first release. Showing a few of the student implemented operations.

Figure 6: View of the UMLe-SDK editor. Shown is a multiplexer in the layout project window,
the toolbar window, and the project window with its .RUL and .LAY configuration files as well as the

hierarchy of the layout structure. Also shown are some of the Add-in operations registered: 2 interactive
Floorplan operations, a DRC and its DRC box, an SDV- Stick Diagram viewer).



22

Figure 7: Above, the UMLe-UEDK presentation page provides in “What’s available?”, any of the UMLe-
Alpha, .exe operations, as well as any of the Add-ins registered in the UMLe-SDK Editor. Below, the

UMLe Help system is illustrated, showing the Extensibility Object Library partially expanded.


