Impact of Internet on e-Cad: A field Survey

Naresh K. Sehgal,

iA-64 processor division,

Intel Corp, Santa Clara, CA

Contributors:

Prof. Jose Lima, Portugal and Dennis Lucey, Web Master, Intel

Contents

- Internet Background
- e-Commerce business models
 - c2c, b2c, c2c
- Emerging internet software models
- e-CAD business models
 - t2t: Tools2Tools
 - t2d: Tools2Designers
 - d2d: Designers2Designers
- A web enabled tool example SAGA
- Future opportunities and directions

Internet Changes the Computing Model

Mid 90's - Now **Ubiquitous VPN/Security Access** Mid 60's - Mid 80's Mid 80's - Mid 90's **Distributed Apps** Internet Client/ Host Host Host **Based** Client/ **Based** Server Based Server Voice/ Data Convergence **Outsourcing** Differentiated Servers **Low Cost** Long term Stability **Broadband**

- High cost infra, limited access
- High transaction costs
- Dist. Computing, power to the masses
- Lower cost of entry, but still barriers to small biz

Move to Distributed Model

- Low cost entry, open access
- Enables new compute & business models
- Low transaction costs
- Lots of enabling technology

Source: ESG

New Computing and business categories

- C2C: Consumer-to-Consumer, e.g., Chat rooms in AOL
- B2C: Business-to-Consumer, e.g., uBID
 - very competitive, battle for eyeballs, est. \$25 B (\$5.3B in Q4'99 according to 03/03/2000 SJ Merc report)
- B2B: Business-to-Business, e.g., Toyota
 - est. size \$200B, grows to \$2 Tril. By 2003 (Gartner group)
- Infrastructure:
 - External, e.g., Oracle, and Internal, e.g., IT dept of Boeing, 4

E-Commerce Portal Models

- Sell-side storefront
 - B2C scenario: single seller, typically a store-front to sell to many customers
 - Buyer has to do comparisons
- Buy-side e-procurement
 - Aggregates many supplier catalogs for corporate purchases
 - Reduced transaction costs, but not lower purchase prices
- B2B marketplace
 - many-to-many relationships between buyers and suppliers
 - Leverage economies of scale in a liquid marketplace
 - Dynamic pricing models, such as auctions and exchanges, improve the economic efficiency of the market

Internet Server Growth: Monthly hosts in Millions

Already 77.784 Mil. Servers till Tuesday April 18, 2000

Emerging Internet software models

- Move away from point-based computing to distributed models
 - lower initial customer costs
 - pay as you go, per invocation
- Architecture independent software
 - portability ensure larger customer base
 - Java and EJB
 - reality1: code once and debug everywhere
 - reality2: JVM issues with MT and MP
 - reality3: Java performance generally inferior to C/C++ based solutions
 - future releases may improve the situation
- New emerging class of ASPs (Application Service Providers)
 - software is stored on remote computers
 - accessed over internet (public or dedicated wires)
 - customers rent the computers, space and connectivity
 - on data centers
 - issues with bandwidth and access delays
 - move to edge networks and cached servers minimize the # of hops
 - expected to be \$11.3 Billion by 2003
 - e.g., tax filing through Intuit or Fidelity web sites
- Some of the unresolved issues with ASP model
 - security, bandwidth bottlenecks, ultimate cost models

Other benefits of Internet

(source: Popular Science, March 2000)

Saving the planet

- 1.5 Bil. Sq ft retail floor saved by e-commerce
- 2 Bil. Sq ft office space, eq to 450 sears towers
- 53 Bil. k-wt hrs energy saved, eq to 21 power plants
- 35 Mil. Metric tons greenhouse gases not released

• How Big is big?

- 800 Mil. Est web pages on internet
- 200 Mil. Large index of web pages in the world
- 38 web pages created/second
- 19 avg. clicks between two randomly selected web pages
- 7 avg. links/web site to other sites

INTERNET is the BIGGEST technological change since Industrialization and Transportation

So, what does this mean for e-Cad?

- Inevitable move to internet based cad: e-Cad
- Potential benefits for customers (e.g., designers)
 - ability to get newer version/patches of tools over the web
 - pay as you go
 - in a design flow, a tool is needed only in a particular step, e.g., layout extraction, so the ownership of a license can be shared
 - new collaboration opportunities with other designers
 - enable interaction with other design phases
 - one designer does not need to be all the way "tall and thin"
- Potential benefits for tool vendors
 - development and financial efficiency
 - move away from file based designs
 - lower prices and higher volume (invocation vs. seat based)
 - be the ASP of your own tools, fixed user environment

T2T: How do two tools in a flow interact?

T2T Interaction: better interoperability

- Old fashioned
 - tool license invocation linked to IP address of a m/c
 - file based data transfer between tools
- Opportunity for further improvements with
 - Shared databases between different tools, even when invoked from different servers. Database may be on the local client or a 3rd server
 - Fast access with in-memory database. Take advantage of new DB technologies, e.g., TimesTen. Persistence may be an issue
 - Tools to leverage MP systems. Some problems more natural than others, e.g., extraction Tools
 - Tools to leverage MT systems. Shared memory between different threads, e.g., simulation

- Example:

Enable better interaction between tools across design phases,
 e.g., between logic and layout synthesis

D2T: Designers using a Tool?

- T2D: How does a designer views a tool?
 - Web enabled flow manager
 - run any-tool from any-where, any-time
 - Actual tools and data may be residing on different network clients
 - Benefit from distributed computing, scalability and availability
 - An example:
 - Combination of optimization techniques
 Simulated Annealing (SA) and Genetic Algorithms (GA)
 - Heuristics to solve NP complete problems
 - Careful parameterization needed
 - Large problem can be partitioned
 - Multiple threads/jobs can be spawned on different network m/cs
 - Such a system has been developed by Prof. Jose Lima
 - UMLe-Anneal is a modular solution with client-server architecture
 - Detailed example at the end

D2D: How do two designers interact?

- D2D: Designers to communicate using web
 - Across geographical and time boundaries
 - whiteboard based interactions at the same time
 - A designer can draw figures, highlight parts of the design
 - Communicate in conjunction with POTS
 - In future, upgrade to audio/video streaming data
 - Enable data/constraints/info hand-over
 - overlays of electronic post-it notes
 - Instant Messaging based alarm invocations
 - Maintain and search repositories of FAQ
- Most pieces of enabling technology exists today
 - no major CAD tools known to be using it
 - Need to train designers to accept electronic watercoolers
- Some issues with electronic info tracking

Umle-Anneal: Internet based SAGA System

Using GAs to determine good SA parameters for a TWPP.

Prof. Jose A. Lima,

University De Minho, Portugal

email: jal@di.uminho.pt

SAGA: a case study around the TWPP

Methodology

- Adopt a systematic, and effective, method for SA problem instance parameterization.
- Use a GA pre-processing phase whose objective is solely that of finding adequate parameters for an ensuing SA based problem solution.
- UMLe-Anneal implements a case study approach: SAGA applies the GA+SA method to the well known two-way partition problem (TWPP).
- SAGA is not problem dependent. It uses a modular set of units. They can be re-used for other kinds of SA problems, in order to obtain good initial estimations and schedules of SA parameter values.

Using GA to determine SA parameters

•partition: unit with partition problem description

•sapart: unit responsible for SA solution of partition

UMLe-Anneal: Client-Server structure

• UMLe-Anneal Partition Server:

- multi-threaded service
- accepts data from internet clients in XDR (eXternal Data Representation) format creating a thread for each new client submission.
- data submitted only describes the specific partition problem.

Internet Submission

- To submit Annealing related partition problems to the UMLe-Anneal server (at the University of Minho) a client must use an appropriate program to contact the server.
- Access a web page, where from a RedHat Linux pre-compiled GLIBC 2 version of the submit can be downloaded
- Alternatively the *submit* source code can also be downloaded.
- Problem submission is very simple:
 provide files .net and .are having the problem description
- invoke the submission application as follows:

 submit file.net file.are galeao.di.uminho.pt 17837
- the server uses SAGA determined parameters to obtain a better SA solution.
- Problem solutions are obtained using a system similar to sapart.

Current UMLe Extensibility Model

http://gioconda.di.uminho.pt/UMLe

Evolution of UMLe-Anneal, using a Web capable environment

- Technologies like dhtml will allow rapid interface building, and customizing
- DA problem specific server proliferation

Web Revolutionizing the VLSI-Design and management processes

- Knowledge base with Archiving
 - Living documents: not set in concrete
 - Infinite memory: distributed storage and search
- Enable hierarchical thinking
 - Knowledge mapping, with abstraction
 - Hide complexity zoom in and zoom out
 - Show detail as appropriate
- Need this for management
 - open, global information sharing work environment
 - real time indicators and information flow intranet
- Organizational impediments net changes everything
 - Watch out for old style, access controls institutional resistance
 - New organization dynamics information flowing crossways
 - need to evolve continuously, as opposed to re-create every time

It seems that Web was designed for a better VLSI CAD methodology - Dennis Lucey

BACKUPS

The SA parameters considered

- Each individual of the AG population encodes a different SA parameter, namely:
 - maxIter: max. number of iterations;
 - maxNulos: max. number of consecutive Metropolis iterations without change
 - alfa: cooling schedule constant
 - beta: constant determining the RunLimit (max number of consecutive Metropolis iterations) schedule
 - gama: determines the scheduling variation of the sucLimit (upperbound on the number of Metropolis solution perturbations)
 - factTemp: initial temperature adjustment factor
 - factRunLimit: initial RunLimit adjustment factor (RunLimit= factRunLimit*numElem)
 - factSucLimit: initial SucLimit adjustment factor (RunLimit= factSucLimit*numElem)
 - numPerturb: number of perturbations in the current solution

The SA parameters (continued)

- The fitness of an individual is determined by the results of the SA using that value, the following expression is used adequacy = α^* quality + β^* run-time (we used α =0.999; β =0.001).
- n different partition problems (i.e. n different test cases).
- m is the number of SA runs for each case. To use a value of m>1 (incurring in a much greater processing time) one establishes a confidence level (e.g. 95%) and using normal distribution determines if the interval μ_1 μ_4 is positive (m=1 vs m=4).
- adequacy's geometric mean: $\sqrt[n]{\prod_{i=1}^{n}(c_i/m)}$.
- adequacy's arithmetic mean of each test case $c_i = \sum_{j=1}^m \alpha^*$ quality + β^* run-time

UMLe-Anneal Partition: A few preliminary results

Parameters Good averaged values

maxIter	250
maxNulos	2
alfa	0.45
beta	0.82
gama	0.85
factTemp	<i>500</i>
factRunLimit	160
factSucLimit	<i>5</i>
numPerturb	2